Author Affiliations
Abstract
School of Electrical and Information Engineering, North China University of Technology, Beijing 100144, China
Optical fiber pre-warning system (OFPS) is often used to monitor the occurrence of disasters such as the leakage of oil and natural gas pipeline. It analyzes the collected vibration signals to judge whether there is any harmful intrusion (HI) events. At present, the research in this field is mainly focused on the constant false alarm rate (CFAR) methods and derivative algorithms to detect intrusion signals. However, the performance of CFAR is often limited to the actual collected signals distribution. It is found that the background noise usually obeys non-independent and identically distribution (Non-IID) through the statistical analysis of acquisition signals. In view of the actual signal distribution characteristics, this paper presents a CFAR detection method based on the normalization processing for background noise. A high-pass filter is designed for the actual Non-IID background noise data to obtain the characterization characteristic. Then, the background noise is converted to independent and identically distribution (IID) by using the data characteristic. Next, the collected data after normalization is processed with efficient cell average constant false alarm rate (CA-CFAR) method for detection. Finally, the results of experiments both show that the intrusion signals can be effectively detected, and the effectiveness of the algorithm is verified.
OFPS HI CA-CFAR normalization Non-IID 
Photonic Sensors
2018, 8(4): 04341
Author Affiliations
Abstract
1 School of Electronic and Information Engineering, North China University of Technology, Beijing, 100144, China
2 School of Information Science and Engineering, Hebei University of Science & Technology, Shijiazhuang, 050000, China
The intrusion events in the optical fiber pre-warning system (OFPS) are divided into two types which are harmful intrusion event and harmless interference event. At present, the signal feature extraction methods of these two types of events are usually designed from the view of the time domain. However, the differences of time-domain characteristics for different harmful intrusion events are not obvious, which cannot reflect the diversity of them in detail. We find that the spectrum distribution of different intrusion signals has obvious differences. For this reason, the intrusion signal is transformed into the frequency domain. In this paper, an energy ratio feature extraction method of harmful intrusion event is drawn on. Firstly, the intrusion signals are pre-processed and the power spectral density (PSD) is calculated. Then, the energy ratio of different frequency bands is calculated, and the corresponding feature vector of each type of intrusion event is further formed. The linear discriminant analysis (LDA) classifier is used to identify the harmful intrusion events in the paper. Experimental results show that the algorithm improves the recognition rate of the intrusion signal, and further verifies the feasibility and validity of the algorithm.
OFPS energy ratio LDA classification 
Photonic Sensors
2018, 8(1): 48
Author Affiliations
Abstract
1 School of Electronic and Information Engineering, North China University of Technology, Beijing 100144, China
2 School of Aviation Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
The optical fiber pre-warning system (OFPS) has been gradually considered as one of the important means for pipeline safety monitoring. Intrusion signal types are correctly identified which could reduce the cost of troubleshooting and maintenance of the pipeline. Most of the previous feature extraction methods in OFPS are usually quested from the view of time domain. However, in some cases, there is no distinguishing feature in the time domain. In the paper, firstly, the intrusion signal features of the running, digging, and pick mattock are extracted in the frequency domain by multi-level wavelet decomposition, that is, the intrusion signals are decomposed into five bands. Secondly, the average energy ratio of different frequency bands is obtained, which is considered as the feature of each intrusion type. Finally, the feature samples are sent into the random vector functional-link (RVFL) network for training to complete the classification and identification of the signals. Experimental results show that the algorithm can correctly distinguish the different intrusion signals and achieve higher recognition rate.
OFPS multi-level wavelet decomposition optical fiber signal recognition RVFL 
Photonic Sensors
2018, 8(3): 03234
Author Affiliations
Abstract
1 School of Computer, North China University of Technology, Beijing 100144, China
2 School of Electrical and Information Engineering, North China University of Technology, Beijing 100144, China
3 School of Aviation Science and Engineering, Beijing University of Aeronautics and Astronautics (BUAA), Beijing 100191, China
For the problem that the linear scale of intrusion signals in the optical fiber pre-warning system (OFPS) is inconsistent, this paper presents a method to correct the scale. Firstly, the intrusion signals are intercepted, and an aggregate of the segments with equal length is obtained. Then, the Mellin transform (MT) is applied to convert them into the same scale. The spectral characteristics are obtained by the Fourier transform. Finally, we adopt back-propagation (BP) neural network to identify intrusion types, which takes the spectral characteristics as input. We carried out the field experiments and collected the optical fiber intrusion signals which contain the picking signal, shoveling signal, and running signal. The experimental results show that the proposed algorithm can effectively improve the recognition accuracy of the intrusion signals.
Linear scale OFPS MT BP neural network spectral characteristics 
Photonic Sensors
2018, 8(3): 03220

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!