作者单位
摘要
1 上海大学材料科学与工程学院, 上海 200072
2 上海大学新型显示技术及应用集成教育部重点实验室, 上海 200072
3 上海大学医学院, 上海 200444
为了得到可应用于植物照明且具有红蓝光谱的有机发光二极管(OLED),采用两种典型的载流子传输材料,N,N'-二(1-萘基)-N,N'-二苯基-(1,1'-联苯)-4,4'-二胺(NPB)和1,3,5-三(1-苯基-1 H-苯并[d]咪唑-2-基)苯基(TPBi)以界面接触或掺杂的方式形成深蓝光激基复合物,并将其与红色磷光材料Ir(DMP-IQ)2(acac)结合,制备得到符合植物光合作用光谱需求的OLED器件。通过改变器件结构中深蓝光激基复合物和红光发光层之间的间隔层厚度,可调节电致光谱中的蓝/红光强度比例。在以掺杂的方式形成激基复合物的结构基础上,将主体材料(mCP)掺入NPB∶TPBi膜中构成三元体系,减少膜中由载流子堆积引起的激子淬灭,在NPB∶TPBi∶mCP掺杂比例为1∶1∶3的实验条件下得到2.8 V的开启电压,4528 cd/m 2的亮度,3.09 cd/A的电流效率和6.96%的外量子效率。
光学设计 有机发光二极管 植物照明 激基复合物 三元体系 
光学学报
2022, 42(4): 0423001
作者单位
摘要
浙江师范大学物理系,浙江 金华 321004
利用高温熔融法成功合成了NaY2F7∶Eu透明微晶玻璃。X射线衍射、透射电子显微镜和选区电子衍射表明NaY2F7纳米晶成功形成并且均匀分散在玻璃基质中,其粒径大小在31~38 nm之间。在340 nm波长激发下,样品表现出Eu2+的蓝光宽带发射,峰值位于425 nm处,表明Eu3+在空气中成功地还原为Eu2+。在393 nm波长激发下,样品具有很强的红光发射,发射光谱中观察到Eu3+来自577、589、612、650、701 nm处的发射峰。通过改变激发波长(340~400 nm),NaY2F7∶Eu透明微晶玻璃的发射光颜色可以从蓝光调节到红光区域。在380 nm激发下,GC660样品在413 K时的发射光积分强度是在313 K时的75.1%。研究结果表明,NaY2F7∶Eu2+/Eu3+在植物照明领域具有潜在的应用。
材料 NaY2F7 玻璃陶瓷 Eu3+/Eu2+ 植物照明 
激光与光电子学进展
2021, 58(15): 1516020
作者单位
摘要
中国计量大学光学与电子科技学院, 浙江 杭州 310018
LED具有效率高、 体积小、 功耗低、 寿命长等优点, 并且因其具有可轻易实现宽幅光谱调控的特性, 在植物照明领域崭露头角。 植物照明用LED分为两大类, 一类是单色光LED, 另一类是白光LED, 其中植物照明用白光LED可与单色LED混合或者单独使用从而实现植物补光照明。 植物封装用白光LED大部分采用蓝光LED芯片或紫外LED芯片和荧光粉组合实现, 即荧光粉转换型白光LED, 但是光谱集中于可见光偏蓝, 对植物进行光合作用的效率不明显。 植物对于光的吸收不是全波段的而是有选择性的, 基于植物光合作用吸收光谱的特殊性, 将白光LED光谱的显色性能作为评判其光谱是否适合植物生长所需的光质的标准, 其平均显色指数Ra, 特殊显色指数R9(饱和红光), R12(饱和蓝光)被考虑选择为植物照明用白光LED的主要性能评价参数。 为设计出植物进行生长发育所需要的、 性能良好的能应用于植物照明领域的白光LED, 选用常见商用YAGG为绿色颜色转换材料, 选用(Sr, Ca)AlSiN3为红色颜色转换材料, 并用传统高温固相法制备了系列光谱可调的(Sr, Ca)AlSiN3荧光粉, 并进行了光谱性能分析。 通过将搭建好的LED结构模型导入光学仿真软件并分别引入绿色荧光粉颗粒、 红色荧光粉颗粒以及蓝光芯片的特性参数, 在Lighttools中分别建立了单蓝光LED芯片(450 nm)和双蓝光LED芯片(450+470 nm)激发(Sr, Ca)AlSiN3和YAGG荧光粉组合, 实现了白光LED的光学仿真模型, 研究了两种激发模式下仿真得到的不同色温白光LED的光谱功率分布及其显色性能。 用蓝光LED芯片、 (Sr, Ca)AlSiN3以及YAGG荧光粉组合进行了单芯片和双芯片显色性能差异的封装验证。 通过将Sr0.8Ca0.12AlSiN3∶0.08Eu2+和YAGG荧光粉的混合物点涂在双蓝光LED芯片上进行了白光LED的封装制备, 获得了Ra=91.2, R9=96.1, R12=78.9, 光谱辐射光效LER=126 lm·W-1的高效高显色白光LED其含有植物生长所需要的蓝光和红光。
白光LED 植物照明 光谱调控 WLED Plant lighting Spectral regulation R9 R9 R12 R12 
光谱学与光谱分析
2021, 41(4): 1060
作者单位
摘要
1 华南理工大学材料科学与工程学院, 广东 广州 510640
2 华南理工大学发光材料与器件国家重点实验室, 广东 广州 510640
针对现有植物光源系统架构难以提供优质的照明环境,提出空间照明均匀度理论。采用多光源模块的植物光源系统实现植物生长空间内的高空间照度均匀度以及色度均匀度,多光源模块由倒置光源、直下式光源以及在生长空间的中部光源组成。通过多光源模块的立体化混光方式达到设计的目的,根据Taguchi理论简化实验过程并结合变异数分析深入优化关键因子,从而找到植物光源系统的最优解。进一步优化LED灯珠的形状和间距,最终获得水平面和竖直面的照度均匀度分别为91.35%和89.71%,混色均匀度分别为87.67%和88.54%的立体化植物光源系统。对植物生长进行模拟和实物测试,实验结果表明植物光源系统能够在整个植物生长空间提供高质量的照明效果。
光学器件 植物照明 空间均匀度 立体化照明 发光二极管 光学设计 
光学学报
2020, 40(19): 1923001
作者单位
摘要
1 华南理工大学 材料科学与工程学院, 广东 广州 510640
2 华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510640
3 华南师范大学 美术学院, 广东 广州 510631
4 深圳信息职业技术学院 智能制造与装备学院, 广东 深圳 518172
目前植物工厂培养架所使用的LED光源模块光学结构简单, 照度均匀度和混色均匀度难以保证, 导致农作物的品质参差不齐。为了提高种植物品质, 需要优化植物光源的照明效果, 设计高均匀度的植物光源。本文针对这一问题提出并研究了一种倒置光源的植物培养架设计方案。将LED灯珠安置在种植面同侧, 并结合曲面反射顶面对LED发出的光线进行进一步均匀分配, 在植物培养架有限的种植空间内增加光线耦合距离和耦合程度, 提高了培养架植物光源的均匀度。经过多次结构优化后, 最终获得了一个照度均匀度为91.64%、混色均匀度为89.73%的高均匀度植物照明培养架。然后基于优化得出的植物光源, 研究植物生长过程对照明效果的影响后表明植物在生长过程中均可获得良好的照明环境。最后研究了不同形状和不同配光曲线的灯珠对培养架均匀度和光能利用率的影响。
植物照明 光学设计 LED LED plant lighting optical design Taguchi Taguchi ANOVA ANOVA 
发光学报
2020, 41(4): 468

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!