作者单位
摘要
长春理工大学 光电工程学院,长春 130022
采用窄线宽、边模抑制高的DFB激光器研制一套开放型TDLAS波长调制技术气体检测装置。选取2 004 nm处CO2分子吸收峰作为吸收谱线,采用锁相放大器进行调制、解调后的二次谐波信号幅值检测气体浓度大小。设计基于开放环境中的Herriott型气体吸收池,使用ZEMAX非序列模式进行吸收池仿真,光线追迹后理论光程可达到1 350 mm,实际光程由50 mm增加到300 mm,检测浓度下限数值由原先的1 300 ppmv降低到214.28 ppmv,有效提高了系统的检测下限能力。配置不同浓度的CO2气体检测,得到二次谐波信号幅值与浓度之间呈现很好的线性关系,其拟合系数为0.998 39,可通过拟合直线方程计算得出待测气体的浓度。配置300 ppmv的CO2进行Allan方差分析,积分时间到101.6 s时,Allan方差处于平稳状态,检测系统的灵敏度为1.512×10-5。检测结果表明检测装置实现了对CO2气体浓度准确测量。该装置可进行结核分枝杆菌呼吸产生的CO2气体浓度进行检测,为肺结核病诊断提供依据。
TDLAS-WMS 谐波信号 痕量气体检测 DFB激光器 CO2 TDLAS-WMS Harmonic signal Trace gas detection DFB laser CO2 
光子学报
2022, 51(2): 0230001
作者单位
摘要
吉林大学电子科学与工程学院, 吉林 长春 130012
为了对痕量甲烷(CH4)进行非接触式检测, 采用可调谐二极管激光吸收光谱(TDLAS)与波长调制光谱(WMS)的检测技术, 利用CH4位于中红外波段1 332.8 cm-1吸收谱线, 设计并研制出痕量CH4检测仪。 该仪器使用中心波长为 7.5 μm的中红外量子级联激光器(QCL), 通过调谐系数-0.2 cm-1·A-1, 采用固定工作温度调节其注入电流(0.6~1.6 A)的方式使其发光光谱扫描CH4气体吸收谱线(1 332.8 cm-1)。 在光学结构方面, 该仪器采用光程为76 m的herriott长光程密闭气体吸收气室, 配合差分检测光路, 降低了由激光光源波动引起的噪声, 确保对痕量CH4进行检测。 实验中, 实现了40×10-9最低检测下限, 检测结果的相对误差为0.09%, 稳定度优于2.8%, 验证了该仪器的可行性。
光谱学 可调谐二级管吸收光谱与波长调制光谱 直接吸收 量子级激光器 herriott气室 Spectroscopy TDLAS-WMS Direct absorption CH4 CH4 QCL Herriott cell 
光谱学与光谱分析
2016, 36(10): 3174
作者单位
摘要
1 吉林大学通信工程学院, 吉林 长春 130012
2 长春大学计算机科学技术学院, 吉林 长春 130022
3 吉林大学集成光电子学国家重点联合实验室, 电子科学与工程学院, 吉林 长春 130012
4 吉林大学仪器科学与电气工程学院, 吉林 长春 130061
甲烷是一种无色、 无味、 易燃、 易爆的气体, 不仅造成煤矿作业的重大安全隐患, 而且又是温室效应的重要气体之一, 对于甲烷气体的监测具有极其重要的意义。 采用混合可调谐二极管激光吸收光谱(TDLAS)与波长调制光谱(WMS)的检测技术, 利用甲烷的2v3(第二泛频带)带R(3)支带吸收谱线, 设计并研制出痕量甲烷气体检测仪。 通过调谐系数-0.591 cm-1·K-1, 采用改变DFB激光器工作温度的方式来获得甲烷在1.654 μm处的最佳吸收谱线。 待DFB激光器激射中心谱线选择后, 通过调节其注入电流幅值来获得合适的发光强度。 同时, 结合频率调制技术将待测信号频率移至高频区, 减小1/f噪声。 在光学结构方面, 采用有效光程为76 m的herriott气室, 确保对痕量甲烷气体进行检测。 利用该痕量甲烷气体检测仪, 在被测气体浓度为50~5 000 μmol·mol-1的范围内, 对二次谐波信号进行了提取, 并利用最小均方误差准则分别对气体浓度、 信噪比的关系、 谐波峰值信号与气体浓度的关系进行了线性拟合, 最低检测限达到了1.4 μmol·mol-1。 实验表明, 谐波波形对称性良好, 未观察到强度调制现象, 消除强度调制等因素对谐波检测的影响。
痕量甲烷 分布反馈式激光器 二次谐波 Trace Methane TDLAS- WMS TDLAS-WMS Distributed feedback Lasers Second harmonic 
光谱学与光谱分析
2016, 36(1): 279

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!