Author Affiliations
Abstract
1 Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 Optics Valley Laboratory, Wuhan 430074, China
Optical vortex arrays, with their unique wavefront structures, find extensive applications in fields such as optical communications, trapping, imaging, metrology, and quantum. The methods used to generate these vortex beam arrays are crucial for their applications. In this review, we begin with introducing the fundamental concepts of optical vortex beams. Subsequently, we present three methods for generating them, including diffractive optical elements, metasurfaces, and integrated optical devices. We then explore the applications of optical vortex beam arrays in five different domains. Finally, we conclude with a summary and outlook for the research on optical vortex beam arrays.
optical vortex array topological charge number orbital angular momentum vector beam 
Chinese Optics Letters
2024, 22(2): 020011
吕家亮 1,2,3姚培军 1,2,3许立新 1,2,3,*
作者单位
摘要
1 中国科学技术大学 核探测与核电子学国家重点实验室,合肥 230026
2 中国科学技术大学 物理学院 光学与光学工程系,合肥230026
3 先进激光技术安徽省实验室,合肥 230026
为了在光纤激光器中获得具有中心波长可调谐的锁模脉冲柱矢量,采用半导体可饱和吸收镜和高反的啁啾光纤光栅作为腔镜,搭建了直腔掺镱脉冲光纤激光器,腔内插入长周期光纤光栅作为模式转化器件,进行了实验验证,取得了波长可调谐的柱矢量脉冲数据。结果表明,激光器工作在1060.72 nm时,光谱带宽0.22 nm,输出斜率效率为8.6%,锁模脉冲宽度为10.9 ps,重频 18.66 MHz,锁模脉冲信噪比高达65 dB,同时获得了模式纯度超过97%的柱矢量光束; 调节腔内的偏振控制器来改变腔内波长的损耗,可以实现锁模柱矢量脉冲的谐振波长在1060.72 nm~1066.04 nm连续可调。该研究为可调谐脉冲柱矢量光纤激光器研制提供了重要的参考价值。
激光器 波长可调谐 锁模 柱矢量光束 掺镱光纤激光器 lasers wavelength tuning mode-locked cylindrical vector beam ytterbium doped fiber laser 
激光技术
2023, 47(4): 454
刘世鑫 1,2彭万敬 2,*冯昱俊 2刘航 2[ ... ]唐淳 2
作者单位
摘要
1 山东大学 激光与红外系统集成技术教育部重点实验室,山东 青岛 266237
2 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
柱矢量光束因其独特的偏振分布特性而在光镊、高分辨率成像、遥感、等离子体聚焦等领域发挥着重要作用。为实现全光纤高功率柱矢量MOPA激光器,采用自主设计基于集成超表面的模式转换光纤器件,进行了理论分析与实验验证。自主设计集成超表面的模式转换光纤器件可直接稳定输出数瓦功率的径向偏振柱矢量种子光,且输出模式纯度可达95%以上。实验中通过降低弯曲损耗并对模式进行控制,获得了单级放大输出功率为52.2 W的径向偏振柱矢量光稳定输出,且模式光场分布在输出功率增加过程中并未出现明显变化。为进一步分析输出的模式特性,采用旋转检偏器的方法检测输出光的偏振特性及偏振纯度,并利用非相干模式叠加方法计算了输出的径向偏振柱矢量光的模式纯度。结果表明,集成超表面模式转换的全光纤柱矢量MOPA激光器在最大输出功率情况下,输出光的偏振纯度约为95.2%,模式纯度约为94%,验证了该全光纤方案的可行性。
超表面 柱矢量光束 径向偏振光 光纤激光器 模式分析 弯曲损耗 metasurface cylindrical vector beam radially polarized beam fiber laser mode analysis bend loss 
强激光与粒子束
2023, 35(10): 101003
作者单位
摘要
1 河北工业大学 先进激光技术研究中心,天津 300401
2 河北省先进激光技术与装备重点实验室,天津 300401
立足于偏振态空域调控技术,矢量光束所特有的偏振态空间结构属性,使其在光学及其交叉学科领域表现出巨大的研究价值和应用潜力。以往的研究主要关注偏振态的横向空域调控,而纵向(传播)方向同样是重要的光场调控维度,偏振态纵向变化矢量光束的出现,拓展了矢量光束的调控维度,为光与物质的相互作用带来更多可能,引起了广泛关注。文中围绕着偏振态纵向空域调控技术的发展,介绍了基于纵向变化位相差和振幅差的偏振态纵向变化矢量光束生成理论,并总结归纳了利用相位调制和空间频谱滤波的两类实验生成方法。此外,文中还对偏振态纵向变化矢量光束目前存在的问题进行了讨论,并对其发展前景进行了展望。
矢量光束 偏振 贝塞尔光束 庞加莱球 vector beam polarization Bessel beam Poincaré sphere 
红外与激光工程
2023, 52(8): 20230362
Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
We numerically demonstrate that the tight focusing of Bessel beams can generate focal fields with an ultra-long depth of focus (DOF). The ultra-long focal field can be controlled by appropriately regulating the order of the Bessel function and the polarization. An optical needle and an optical dark channel with nearly 100λ DOF are generated. The optical needle has a DOF of 104.9λ and a super-diffraction-limited focal spot with the size of 0.19λ2. The dark channel has a full-width at half-maximum of 0.346λ and a DOF of 103.8λ. Furthermore, the oscillating focal field with an ultra-long DOF can be also generated by merely changing the order of the input Bessel beam. Our results are expected to contribute to potential applications in optical tweezers, atom guidance and capture, and laser processing.
Bessel beam vector beam tight focusing depth of focus 
Chinese Optics Letters
2023, 21(7): 072601
作者单位
摘要
哈尔滨理工大学黑龙江省量子调控重点实验室大珩协同创新中心,黑龙江 哈尔滨 150080
矢量光场独特的空间模式及偏振分布使其成为目前研究的热点问题,模间相位的变化直接影响矢量光场的偏振分布,使其在测量及传感领域具有巨大的应用潜力。提出并实验论证了一种由矢量光场注入的单频激光干涉仪技术:首先将臂间微小位移映射为矢量传感光场的模间相位变化,然后通过空间偏振层析实时监测、解算光场矢量模态,进而可在任意相位变化区间(含相位不敏感区域)实现标准量子或海森堡(注入N00N态时)极限的相位测量精度。
矢量光束 空间斯托克斯层析 相位精密测量 
激光与光电子学进展
2023, 60(11): 1106023
Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
Noble metallic nanostructures with strong electric near-field enhancement can significantly improve nanoscale light–matter interactions and are critical for high-sensitivity surface-enhanced Raman spectroscopy (SERS). Here, we use an azimuthal vector beam (AVB) to illuminate the plasmonic tips circular cluster (PTCC) array to enhance the electric near-field intensity of the PTCC array, and then use it to improve SERS sensitivity. The PTCC array was prepared based on the self-assembled and inductive coupled plasmon (ICP) etching methods. The calculation results show that, compared with the linearly polarized beam (LPB) and radial vector beam excitations, the AVB excitation can obtain stronger electric near-field enhancement due to the strong resonant responses formed in the nanogap between adjacent plasmonic tips. Subsequently, our experimental results proved that AVB excitation increased SERS sensitivity to 10-13 mol/L, which is two orders of magnitude higher than that of LPB excitation. Meanwhile, the PTCC array had excellent uniformity with the Raman enhancement factor calculated to be 2.4×108. This kind of vector light field enhancing Raman spectroscopy may be applied in the field of sensing technologies, such as the trace amount detection.
surface-enhanced Raman spectroscopy plasmonic tips circular cluster array azimuthal vector beam surface plasmon polaritons 
Chinese Optics Letters
2023, 21(3): 033603
作者单位
摘要
西安交通大学 物理学院 物质非平衡合成与调控教育部重点实验室 陕西省量子光学与光电量子器件重点实验室,西安 710049
偏振在光与物质相互作用中扮演着重要的角色。过去几十年里,绝大多数研究工作都基于偏振单一且均匀分布的标量光场。近年来,随着光场产生与操控技术的不断发展,空间偏振非均匀分布的矢量光场逐渐引起人们的关注。矢量光场具有多维可调控的自由度以及独特的焦场属性,在经典与量子通讯、光学操控和显微成像等领域具有重要的研究价值与广泛的应用前景。矢量光场与物质相互作用的研究不仅丰富了人们对光场矢量特性的认识,也推动了基于不同介质实现光场调控的新发展。原子介质对光场偏振具有较高的敏感性,容易形成原子极化,并且具有更多的调控自由度,是探索矢量光场特性与实现矢量光场调控的理想平台。本文回顾了近年来矢量光场与原子介质相互作用的研究进展,重点介绍了原子介质与矢量光场在空间极化调控、相干调控、频率转换和非线性传输等研究领域的相关工作,并对该领域的未来发展趋势进行了展望。
矢量光场 原子介质 各向异性 量子相干 四波混频 Vector beam Atomic medium Anisotropy Quantum coherence Four-wave mixing 
光子学报
2022, 51(10): 1026001
作者单位
摘要
1 航天工程大学宇航科学与技术系,北京 101416
2 航天工程大学基础部,北京 101416
涡旋半波片(VHP)是一种快轴取向在空间分布上呈特定角向变化规律的偏振光学元件。通过级联两个或多个低阶VHP可以产生任意高阶柱矢量光束(CVB)。基于单个VHP的琼斯矩阵,推导了VHP级联后的等效琼斯矩阵,从理论上解释了VHP级联后等效阶数的变化规律。实验上,利用m=-1m=2的两个VHP级联产生1阶和3阶径向偏振和角向偏振CVB,计算斯托克斯参数并绘制矢量光束偏振态分布图,并与m=1的单个VHP直接生成的CVB进行比较,证明了级联方法的可靠性。在级联VHP产生相同高阶CVB时,VHP的不同级联顺序能够影响由于中心错位而造成的光束畸变程度。经实验对比分析,得到了级联应用中能够稳定产生高质量、高阶CVB的方法,并通过级联多个VHP产生了100阶以内任意CVB。
物理光学 柱矢量光束 涡旋半波片 琼斯矩阵 斯托克斯参数 偏振检测 
光学学报
2022, 42(13): 1326001
Author Affiliations
Abstract
Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
The cylindrical vector beam (CVB) has been extensively studied in recent years, but detection of CVBs with on-chip photonic devices is a challenge. Here, we propose and theoretically study a chiral plasmonic lens structure for CVB detection. The structure illuminated by a CVB can generate single plasmonic focus, whose focal position depends on the incident angle and the polarization order of CVB. Thus, the incident CVB can be detected according to the focal position and incident angle and with a coupling waveguide to avoid the imaging of the whole plasmonic field. It shows great potential in applications including CVB-multiplexing integrated communication systems.
cylindrical vector beam surface plasmon polaritons metasurface optical vortices 
Chinese Optics Letters
2022, 20(2): 023602

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!