孙二昌 1,2麻金继 1,2,*吴文涵 1,2杨光 1,2郭金雨 1,2
作者单位
摘要
1 安徽师范大学地理与旅游学院, 安徽 芜湖 241002
2 资源环境与地理信息工程安徽省工程技术研究中心, 安徽 芜湖 241002
利用地球静止轨道卫星Himawari-8气溶胶光学厚度 (AOD) 产品能够估算空间覆盖范围广、时间分辨率高的近地表 PM2.5 浓度。基于三维变分同化系统将AOD估算得到的 PM2.5 资料同化进入WRF-Chem大气化学模式中,通过控制实验与同化实验的对比与分析,探讨了AOD估算得到的PM2.5资料同化对 PM2.5 污染模拟的改进作用。实验结果表明:(1) AOD估算得到的 PM2.5 资料同化能够改进 PM2.5 污染模拟效果;(2) PM2.5 污染模拟改进效果存在时空差异。此外,与其他研究中使用AOD观测算子直接同化AOD的方法相比,该方法的操作更加简单。
WRF-Chem模式 Himawari-8 气溶胶光学厚度 PM2.5 地理加权回归模型 WRF-Chem mode Himawari-8 aerosol optical depth PM2.5 geographically weighted regression 
大气与环境光学学报
2023, 18(1): 59
作者单位
摘要
1 中国科学院 安徽光学精密机械研究所 环境光学与技术重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
为获取杭州市夏季臭氧浓度时空分布特征和气象要素对臭氧浓度的影响, 利用臭氧差分吸收激光雷达开展观测, 同时利用WRF-Chem模式模拟臭氧时空特征和气象要素。实验结果表明: 臭氧浓度模拟结果与激光雷达的观测结果具有很好的一致性。2016年夏季, 杭州市18天内发生了4次臭氧重污染, 每次持续2到5天, 最高浓度达550 nL/L。高空1~2 km存在较高浓度的臭氧污染层, 并存在垂直和水平传输, 对近地面臭氧污染有明显影响。近地面臭氧浓度平均最低值出现在凌晨2时左右, 为75 nL/L; 平均浓度最高值在中午12时左右出现, 为90 nL/L。近地面臭氧浓度的日变化明显, 而高空的臭氧浓度日变化不明显。臭氧差分吸收激光雷达系统对臭氧时空分布的探测是可靠的。强太阳辐射、高温、低湿都是臭氧污染形成的有利环境条件, 而强风对局地臭氧有扩散作用, 降雨对臭氧有很好的消除作用。
差分吸收激光雷达 臭氧 气象要素 传输 differential absorption lidar ozone WRF-Chem WRF-Chem meteorological factors transmission 
光学 精密工程
2018, 26(8): 1882

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!