Author Affiliations
Abstract
1 LULI - CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités - F-91128 Palaiseau cedex, France
2 CEA-DAM-DIF, F-91297 Arpajon, France
3 CEA Saclay, DSM/Irfu/Service d’Astrophysique, F-91191 Gif-sur-Yvette, France
4 Helmholtz-Zentrum Dresden – Rossendorf HZDR, Bautzner Landstraße 400, 01328 Dresden, Germany
5 Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA
6 Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
7 JIHT-RAS, 13-2 Izhorskaya st., Moscow 125412, Russia
8 National Research Nuclear University MEPhI, Moscow 115409, Russia
9 Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
10 Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
11 LUTH, Observatoire de Paris, UMR CNRS 8102, Université Paris Diderot, 92190 Meudon, France
12 Department of Energy Engineering Science, Faculty of Engineering Sciences, Kyushu University, Japan
13 General Atomics, San Diego, CA 92121, USA
14 Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
15 Flash Center for Computational Science, University of Chicago, IL 60637, USA
The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation () of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.
accretion processes high-power laser hydrodynamics laboratory astrophysics polar radiative shocks 
High Power Laser Science and Engineering
2018, 6(3): 03000e43
L. Van Box Som 1,2,3,*é. Falize 1,3M. Koenig 4,5,6Y. Sakawa 7[ ... ]S. Tomiya 11
Author Affiliations
Abstract
1 CEA-DAM-DIF, F-91297 Arpajon, France
2 LERMA, Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, F-75005 Paris, France
3 CEA Saclay, DSM/Irfu/Service d’Astrophysique, F-91191 Gif-sur-Yvette, France
4 LULI - CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
5 UPMC Univ Paris 06: Sorbonne Université - F-91128 Palaiseau Cedex, France
6 Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
7 Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
8 GEPI, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75014 Paris, France
9 Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
10 0LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-92195 Meudon, France
11 Aoyama Gakuin University, Japan
A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experimental results are compared with 2D FCI2 simulations to characterize the dynamics and the structure of plasma flow before and after the collision. The good agreement between simulations and experimental data confirms the formation of a reverse shock where cooling losses start modifying the post-shock region. With the multi-material structure of the target, a hydrodynamic collimation is exhibited and a radiative structure coupled with the reverse shock is highlighted in both experimental data and simulations. The flexibility of the laser energy produced on GEKKO XII allowed us to produce high-velocity flows and study new and interesting radiation hydrodynamic regimes between those obtained on the LULI2000 and Orion laser facilities.
accretion processes high power laser hydrodynamics laboratory astrophysics. 
High Power Laser Science and Engineering
2018, 6(2): 02000e35

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!