作者单位
摘要
西安邮电大学电子工程学院, 陕西 西安 710121
在使用光纤光栅实现皮秒级别时延的基础上, 提出一种光纤光栅与单模光纤相结合的微秒级别级联结构, 该结构可以实现中心波长1 550~1 553 nm范围内, 间距为1 nm的窄波长反射型时延线, 共1, 1.5, 2和2.5 μs四种不同的时延。 将单波长反射的啁啾布拉格光纤光栅与103 m单模光纤连接构成延迟单元, 再利用光环形器将4个延迟单元级联并使用内半径为3 cm的光纤绕线盘, 将四种延时单元的传输光纤进行整合。 借助光纤光栅的反射镜作用, 控制不同波长光信号通过不同的传输距离, 从而达到时延目的。 本文通过对啁啾布拉格光纤光栅的反射谱进行仿真分析, 发现相邻反射谱的旁瓣会出现交叠现象, 因此使用六个切趾函数对旁瓣滤除。 结果显示: 不同切趾函数的滤除效果也不同, 能够完全滤除旁瓣并且对反射谱包络影响最小的是柯西切趾函数, 经柯西切趾后能使不同波长光信号在对应中心波长1 nm范围内反射率达到1, 而其他位置均为0。 由于使用光纤绕线盘整合延迟单元传输光纤会产生一定损耗, 因此对弯曲损耗进行仿真分析, 结果表明: 弯曲半径相同时, 损耗与工作波长成正比; 工作波长相同时, 弯曲损耗与弯曲半径成反比。 当弯曲半径大于2.9 cm时, 弯曲损耗曲线变化平缓并趋于0, 因此当光纤绕线盘内半径为3 cm时保证了在减小延迟模块体积的同时又不会有过大的损耗。 通过TDS784D型示波器对频率为2 000 Hz的信号经不同传输距离后的波形进行测试, 结果显示经3 m和5 km传输线后信号的各项参数基本保持不变, 经过长距离传输后, 依然能保持原信号特性, 因此使用103 m传输线可达到延迟目的。 使用W-GGL型光功率计对不同频率下的输出功率进行测量, 与直光纤的输出功率相比, 当弯曲半径为2~3 cm时偏差较大, 等于3 cm时偏差为0.18 dBm, 大于3 cm时则无限趋近, 因此设置绕线盘内半径为3 cm符合光纤延迟线的损耗范围。
光纤延迟线 光纤光栅级联结构 反射谱 切趾函数 弯曲损耗 Fiber delay line Fiber grating cascade structure Reflection spectrum Apodization function Bending loss 
光谱学与光谱分析
2022, 42(7): 2241
李志伟 1,2,*施海亮 1,2罗海燕 1,2熊伟 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
干涉光谱技术在大气遥感、 天文探测及地物勘察等诸多领域的应用是当前国内外研究热点, 光谱重构作为遥感数据处理的重要环节与探测精度紧密相关。 干涉数据由于有限光程差采样导致复原光谱出现频率泄露, 切趾函数在光谱重构过程中可以起到平滑光谱、 保持复原光谱和其他类型分光技术探测光谱一致性的作用, 但同时会造成重构光谱的分辨率下降。 已有研究表明切趾函数并没有提高反演精度, 同时多个典型大气遥感载荷地面数据处理过程中并未使用切趾函数。 空间外差光谱技术由于其诸多优点在国内外引起广泛关注, 中科院安光所基于该技术成功研究出用于大气CO2探测的原理样机。 信噪比是光谱仪的核心指标之一, 从信噪比、 光谱分辨率和探测精度之间的关系出发研究切趾函数在干涉数据光谱重构中的影响。 针对当前传统切趾函数并没有达到最优旁瓣抑制效果, 以诺顿-比尔切趾函数为基础, 在分辨率降低相同的情况下, 获取最大的旁瓣抑制程度为判据构造了10种不同光谱展宽程度的切趾函数。 利用SCIATRAN辐射传输模型分析了大气CO2遥感探测中不同气体浓度造成的大气层顶的辐亮度差异, 推导了典型条件下不同光谱分辨率满足1%探测精度需求的信噪比要求。 以实验室空间外差光谱仪样机参数为基础, 通过仿真干涉数据和本文构造切趾函数分析了不同切趾程度下光谱分辨率和信噪比的变化关系。 最后利用实验室研制的样机开展了实验验证, 通过观测稳定均匀积分球辐射源获取干涉数据在不切趾的情况下计算信噪比, 以及干涉数据进行不同程度切趾后复原光谱信噪比。 仿真和试验结果表明干涉数据由于切趾对噪声的抑制信噪比逐渐升高, 同时造成光谱分辨率逐渐下降, 而探测精度由于分辨率下降对光谱信噪比的要求也逐渐升高。 探测精度对信噪比的需求提高明显高于切趾作用下光谱信噪比的升高趋势, 仿真数据和实测数据信噪比分别在切趾程度大于1.6倍和1.8倍的情况下低于探测精度对仪器信噪比需求, 即白噪声在噪声中占主导的情况下不切趾更有利于探测精度的保障。 该研究结果可以作为干涉数据光谱重构的参考。
遥感 空间外差光谱技术 切趾函数 信噪比 光谱分辨率 Remote sensing Spatial heterodyne spectroscopy Apodization function Signal to noise ratio Spectral resolution 
光谱学与光谱分析
2020, 40(1): 29
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
傅里叶变换是干涉图分析处理的常用方法,由于截断效应,对样本数据直接进行傅里叶变换时会发生频谱泄漏,常采用加切趾函数的方法减小泄漏。首先分析多种常见切趾函数的性能,研究切趾函数主瓣宽度与旁瓣衰减对频谱泄漏的影响;在此基础上,提出一种基于零阶贝塞尔函数加权的三角窗切趾函数,对三角窗函数加权,使其旁瓣衰减加快。实验结果表明:采用提出的改进的三角窗切趾函数能有效抑制频谱泄漏;相比于三角窗,改进的三角窗切趾函数平均峰-峰值信噪比提升了4.9%,方均根值信噪比提升了3.5%,优于常见窗中最优的布莱克曼窗。改进的三角窗切趾函数的主瓣宽度为0.043π,与汉宁窗接近,具有较高的频率分辨率。
信号处理 光谱分析 改进的三角窗函数 切趾函数 干涉图 傅里叶变换 
光学学报
2020, 40(3): 0307001
作者单位
摘要
山西大学 工程学院,山西 太原 030013
为实时获取战场激光、大气污染物气体、毒气等待测物光谱信息的光谱复原,设计了基于现场可编程门阵列(FPGA) 的实时光谱采集分析系统。该系统选用迈克尔逊干涉具和碲镉汞探测器获取待测光谱信息,将采集到的数据传入FPGA。利用硬件描述语言VerilogHDL在Xilinx FPGA芯片上依据傅里叶变换(FFT)实现干涉条纹到光谱数据的实时处理。实验结果表明,FPGA实际计算1 024点基2-FFT频谱分布信息与Matlab理论计算结果相同,可满足实时光谱探测的要求。
光谱复原 迈克尔逊干涉具 傅里叶变换 切趾函数 spectrum recovery Michelson interferometer Fourier transform apodization function FPGA FPGA 
应用光学
2013, 34(3): 447
作者单位
摘要
1 中国科学院 西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安 710119
2 中国科学院 研究生院, 北京 100049
将一种矩阵算法拓展应用于数值求解多模耦合模微分方程, 并使用该矩阵算法对大模场啁啾光纤光栅的光谱特性进行了理论研究。结果表明, 大模场多模光纤光栅因模式的自耦合和互耦合而使反射谱存在多个反射峰, 这与单模光纤光栅的反射谱不同。由于光栅周期存在啁啾, 大模场光纤光栅的反射峰分裂, 且峰值反射率减小。使用高斯切趾函数可使反射峰分裂在一定程度上得到改善。
矩阵方法 大模场啁啾光纤光栅 耦合模理论 切趾函数 matrix method chirped LMA FBG coupled mode theory apodization function 
强激光与粒子束
2011, 23(7): 1794
作者单位
摘要
南京邮电大学 光电工程学院,江苏 南京 210003
文章应用传输矩阵法对取样光纤布拉格光栅(SFBG)的反射谱进行了数值模拟,并分析了折射率调制幅度、占空比、取样周期和光栅长度等光栅参数对其反射谱的影响,在此基础上用切趾函数对其进行旁瓣干扰处理,得到了较为理想的8通道SFBG反射谱。
取样光纤布拉格光栅 传输矩阵 反射谱 切趾函数 SFBG transfer matrix reflective spectrum apodization function 
光通信研究
2010, 36(6): 39
吕博 1,2,*龚桃荣 1,2许鸥 1,2鲁韶华 1,2[ ... ]简水生 1,2
作者单位
摘要
1 全光网络与现代通信网教育部重点实验室, 北京 100044
2 北京交通大学光波技术研究所, 北京 100044
针对制作可用于40 Gb/s全光色散补偿的宽带线性啁啾光栅时出现带内群时延纹波波动较大等问题,提出了一种通过设计和改变切趾函数的参量来优化线性啁啾光栅的新方法。该方法实现简单,只需根据需要设计具有不同滚降特性的切趾函数,同时利用遗传算法来优化切趾参量,结合传输矩阵法经过200代获得了低带内时延纹波的线性啁啾光栅。数值结果验证了采取非对称分段切趾法在保持反射谱宽和平坦性的同时可以抑制带内群时延纹波的优越性。利用该方法制作了反射谱工作带宽为1.06 nm、时延纹波不超过45.60 ps、可用于大容量密集波分复用系统(DWDM)色散补偿的线性啁啾光纤光栅。
光通信 线性啁啾光栅 遗传算法 切趾函数 群时延纹波 
光学学报
2008, 28(8): 1434

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!