作者单位
摘要
1 南开大学物理科学学院、泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300071
2 山西大学极端光学协同创新中心, 山西 太原 030006
3 山东师范大学光场调控及应用协同创新中心, 山东 济南 250358
人工微结构可以捕获特定频率的电磁波,其为增强光与物质相互作用以及调控光场的重要平台之一。连续体束缚态在能谱上位于辐射连续区域,其是开放波动系统中与辐射连续态完全正交的本征态。连续体束缚态源于波动的相干相消,可以极大地抑制微纳光子器件的辐射损耗,为解决人工微纳结构中的光束缚提供全新思路。本文回顾连续体束缚态的发展历程,着重阐述连续体束缚态的理论模型在不同人工光学微纳结构中的进展与应用。连续体束缚态有望促进光通信、集成光学及高效率光场调控等领域的发展。
光学器件 物理光学 连续体束缚态 模式相干 人工微结构 辐射的品质因数 
光学学报
2021, 41(1): 0123001
Author Affiliations
Abstract
1 Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Topological photonics provides a new opportunity for the examination of novel topological properties of matter, in which the energy band theory and ideas in topology are utilized to manipulate the propagation of photons. Since the discovery of topological insulators in condensed matter, researchers have studied similar topological effects in photonics. Topological photonics can lead to materials that support the robust unidirectional propagation of light without back reflections. This ideal transport property is unprecedented in traditional optics and may lead to radical changes in integrated optical devices. In this review, we present the exciting developments of topological photonics and focus on several prominent milestones of topological phases in photonics, such as topological insulators, topological semimetals, and higher-order topological phases. We conclude with the prospect of novel topological effects and their applications in topological photonics.
topological photonics states artificial microstructures 
Chinese Optics Letters
2021, 19(5): 052602

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!