作者单位
摘要
中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
针对非球面光学元件加工对圆弧金刚石砂轮形状误差测量的需求,提出了砂轮三维几何形貌在位检测与误差评价方法。建立了砂轮外圆面螺旋扫描轨迹测量数学模型,利用位移传感器获取了砂轮表面轮廓数据;对得到的数据匀滑滤波后沿圆周展开并进行插值处理,得到砂轮三维几何形貌。然后,根据非球面平行磨削加工特点,提出评价圆弧砂轮形状精度的指标。通过提取三维几何形貌轴截面轮廓,进行最小二乘圆弧拟合得到不同相位处的圆弧半径与圆心坐标,并由误差分离获得砂轮表面圆弧的圆度误差、圆周跳动误差及轮廓圆心轴向偏差。最后,对非球面加工圆弧金刚石砂轮进行检测,获得了砂轮的三维几何形貌以及多个关键尺寸及其误差数据: 即圆弧金刚石砂轮的平均圆弧半径为55.442 3 mm,半径波动极差为0.16 mm,中央±8 mm环带内圆弧的圆度误差约为5 μm,圆周跳动误差约为2 μm,截面轮廓圆心轴向位置相对偏差为0.008 mm。根据检测结果,进行了大口径复杂非球面磨削实验,得到的元件面形P-V值为4.62 μm,RMS值优于0.7 μm,满足工程的实际需求。
非球面磨削 圆弧金刚石砂轮 三维形貌误差 在位测量 螺旋扫描测量 aspheric grinding arc diamond wheel 3D topography error on-machine measurement screw-scanning measurement 
光学 精密工程
2017, 25(12): 3079
作者单位
摘要
1 闽江学院, 福建 福州 350108
2 国防科学技术大学电机工程与自动化学院, 湖南 长沙 410073
数控(NC)加工技术是解决非球面镜加工困难的一种方法。针对激光装置所使用的大口径光学玻璃非球面透镜,提出采用超精密磨削技术来实现高效、高精度的成型加工。通过加工实验研究了控制磨削切深和进给速度对表面加工质量的影响,寻找出大切深缓进给的磨削加工方式,改善了元件表面加工质量,有效抑制了加工过程引入的亚表面缺陷。开展了非球面补偿加工技术实验研究,采用等面形误差曲线补偿加工方法,能有效降低元件面形峰谷(PV)值,通过两次补偿加工,330 mm×330 mm非球面镜的磨削面形误差可控制在约3 μm,获得较为理想的面形加工精度。
光学设计与制造 超精密加工 非球面磨削 补偿加工 加工精度 面形检测 
中国激光
2007, 34(12): 1705

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!