秦子长 1,2任成明 1,2戚允升 1,2王泽斌 3,4[ ... ]孟庆宇 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 上海宇航系统工程研究所,上海 201109
4 哈尔滨工业大学 空间光学工程研究中心,黑龙江 哈尔滨 150001
5 航天系统部装备部军事代表局驻长春地区军事代表室,吉林 长春 130033
系统性地采取严格控制光学元件加工装配精度、采用大质量高稳定性光机结构、运用精密热控等方法,是以往保证空间相机光学系统高性能成像质量的常规方法,但同时该策略的实施也给相机研制带来了较高的经济与资源代价。面对高性能空间光学相机低成本化的发展趋势,降低光学系统误差敏感度,在保证成像性能的同时降低实现成本,是需要面对与解决的课题。以某小型空间相机研制为背景,应用光学系统低误差敏感度设计方法(降敏设计方法),对相机焦距500 mm、相对孔径1∶5、视场角2ω=4°的同轴两镜折反射式光学系统进行了降敏设计。结果表明,基于降敏设计方法获得的光学系统不仅像差校正理论结果表现优异,调制传递函数接近衍射极限,同时,仿真显示其在误差干扰下光学系统鲁棒性好,为相机的快速低成本制造提供了保证。光学系统降敏设计方法对高性能小型空间载荷的设计与低成本快速研制具有重要的应用价值。
空间相机 光学系统设计 误差敏感度 降敏设计方法 折反射式光学系统 space camera optical system design error sensitivity desensitization design method catadioptric optical system 
红外与激光工程
2022, 51(10): 20220365
作者单位
摘要
上海卫星装备研究所,上海 200240
立方星具有发射成本低、周期短、尺寸小和功率小等优点,非常适合某些创新技术率先验证、星载一体化或者以分布式空间网络的方式提供遥感与通讯等服务,例如星座和编队飞行等。鉴于此,设计一个适用于3U立方星平台的相机光学系统。首先通过对不同光学系统结构进行对比分析,确定系统采用同轴折反式结构,该系统的焦距为460 mm,视场角为4°,工作波段为450~700 nm。然后通过分析系统的传递函数,得到系统口径与遮拦比之间的对应关系,确定口径为92 mm,F数为5。最后对系统进行优化,系统以卡式系统为原型,主、次镜为曼金镜,优化后各视场的像质均接近衍射极限,在奈奎斯特频率处传递函数优于0.3。
光学设计 光学系统设计 立方星 折反式光学系统 公差分析 光学传递函数分析 
激光与光电子学进展
2021, 58(5): 0522002
作者单位
摘要
西安应用光学研究所, 陕西 西安 710065
设计了一种用于长波非制冷红外和半主动激光复合导引的共口径折反式光学系统。为了减小反射式系统的零件加工和装调难度, 将卡塞格林系统次反射镜简化为平面反射镜, 主反射镜采用金属抛物面, 优化目镜组透镜尺寸, 避免光路内部遮挡, 利用反射式系统一次像面, 配合红外材料选取实现红外通道的光学被动消热差设计; 在平行光路中设置平板分光和激光窄带滤光片, 提高系统分光效率和透过率。设计结果表明: 红外通道特征频率35.7 lp/mm处MTF>0.2, 激光线性区为2°, 满足系统指标要求。
折反式光学系统 激光/红外双模导引头 光学被动无热化 激光线性区 catadioptric optical system laser/infrared dual-mode seeker optical passive athermalization laser linear region 
应用光学
2019, 40(6): 987
作者单位
摘要
1 中国科学院西安光学精密机械研究所空间光学应用研究室, 陕西 西安 710119
2 陕西师范大学物理学与信息技术学院, 陕西 西安 710119
设计了一种基于改良曼金反射镜的大相对孔径、大视场的光学成像系统,分析了改良曼金反射镜的像差,提出了改良曼金反射镜的设计方法。系统采用改良曼金反射镜和折反式光学系统结合的形式,相对孔径为1/1.8,视场角为4°×4°,工作波段为450~850 nm,焦距为380 mm,成像探测器像元为2 μm×2 μm的互补金属氧化物半导体(CMOS)探测器,在250 lp/mm Nyquist频率处的调制传递函数值接近衍射极限且大于0.5。系统次镜采用曼金反射镜和消色差透镜结合的形式,基于系统初始结构初步优化分析所得的球差、正弦差,采用PW法求解出消色差曼金反射镜的光焦度;基于消色差条件和系统剩余色差,求解出消色差曼金反射镜3个表面的光焦度,计算得到了表面的曲率半径。系统的单色像差及色差均较小,成像质量好。
光学设计 大相对孔径 曼金反射镜 大视场 折反式光学系统 
光学学报
2019, 39(9): 0922001
作者单位
摘要
1 北京理工大学光电学院, 北京 100081
2 北京市混合现实与新型显示工程技术研究中心, 北京 100081
视网膜投影显示(RPD)是头戴显示器(HMD)领域的一个研究热点,能够克服传统HMD辐辏聚焦矛盾(VAC)。为了使RPD小型便携化,以微机电系统(MEMS)扫描镜作为空间光调制器(SLM)设计制造了折反式激光RPD系统。首先,介绍了辐辏聚焦矛盾,分析了RPD的基本原理。通过传统的RPD光路结构,实验验证了以MEMS激光扫描投影作为图像源的麦克斯韦观察法原理的可行性,分析并解决了黑斑问题。接着,完成了RPD系统的光学设计,分析评价了系统的性能。最后,制造出小型便携式的原型机,原型机瞳距可调,视场角为30°(H)×22°(V),无畸变,并通过实验对其显示效果进行了验证。
光学设计 头戴显示器 视网膜投影显示 辐辏聚焦矛盾 折反式光学系统 
光学学报
2017, 37(12): 1222001
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所 光学系统先进制造技术中国科学院重点实验室, 吉林 长春 130033
为了实现对远距离目标的实时跟踪与测量, 设计了口径为650 mm, 焦距为5 000~2 000 mm的连续变焦距光学系统。提出了牛顿式折反射光学系统与倒置的连续变焦距光学系统组合的设计方法, 实现了光瞳的合理匹配与对接。确定了合适的入瞳位置, 消除了变焦过程中像面容易产生的鬼像。通过合理匹配主系统和变焦距系统的光焦度, 使得二级光谱最小化。运用CODEⅤ软件对各焦距位置的像差进行优化与平衡, 使变焦距光学系统在各焦距位置的像差均得到校正与平衡, 像面保持严格的一致性, 从而各焦距位置成像质量良好。实验显示该系统全视场平均传递函数均在0.524以上(Nyquist频率: 35 lp/mm), 满足使用要求。
连续变焦距光学系统 折反射光学系统 光学设计 像质 continuous zoom optical system catadioptric optical system optical design image quality 
光学 精密工程
2014, 22(9): 2369
作者单位
摘要
北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
针对目前低成本、小型化、长焦距非制冷热成像系统要求光学系统具有成像质量高、相对孔径大、结构尺寸小、温度适应性广的特点,在对多种实现超紧凑型光学系统结构的分析比较基础上,选用折反式结构,设计了一种大相对孔径超紧凑型红外光学系统。该光学系统的相对孔径达到了1/0.89,远射比达到了0.67。结合该光学系统的结构特点,仅使用Ge材料即实现了-40 ℃~60 ℃温度范围内的被动无热化设计。采用杂散光分析软件对系统进行了杂散光分析,提出了合理的杂散光抑制措施。设计分析结果表明:该光学系统在工作温度范围内像质优良(其在不同环境温度下的调制传递函数均接近衍射限)、体积结构紧凑,杂散光可控,可满足小型化、长焦距非制冷热成像系统的使用需求。
光学设计 大相对孔径 无热化 折反射式光学系统 
光学学报
2014, 34(6): 0622002
作者单位
摘要
中国科学院长春光学精密机械与物理研究所光学系统先进制造技术中国科学院重点实验室, 吉林 长春 130033
随着非制冷红外探测器技术的快速发展,非制冷红外光学系统得到了广泛应用。为满足机载或弹载非制冷红外光学系统结构尺寸紧凑、相对孔径大、温度适应性强、杂散光抑制能力高的要求,采用折反射式二次成像光学系统结构形式,实现了远射比0.55,F数0.8的光学系统设计,同时采用光学被动补偿方式,通过适当的光学和结构材料匹配实现了-40 ℃~50 ℃无热化设计,并配合一次像面处视场光阑保证光学系统具有较高的杂散光抑制能力。给出了完整的光学系统设计,设计结果表明:光学系统在不同温度下各视场调制传递函数接近衍射极限,空间排布紧凑。通过高低温成像实验,验证了该非制冷红外光学系统满足机载或弹载应用的环境要求。
光学设计 红外光学系统 无热化 折反射式光学系统 
光学学报
2014, 34(5): 0522003
作者单位
摘要
北京空间机电研究所, 北京 100190
针对一种折反式光学系统相机遇到的消杂光问题,根据杂光计算结果对相机进行了消杂光设计,通过试验对杂光计算结果进行了验证,试验结果与计算结果吻合,验证了消杂光设计的正确性。进行消杂光设计后,相机的杂光系数满足设计指标要求,有效地减小了杂光对图像质量的影响。
折反式光学系统 杂光 光线追迹 图像质量 catadioptric optical system stray light design test 
光学与光电技术
2012, 10(1): 44
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 光学系统先进制造技术中国科学院重点实验室, 吉林 长春 130033
2 中国科学院研究生院, 北京 100049
根据目前搜索和跟踪系统要求其红外成像光学系统具有高成像质量、超轻小型化和高温度适应性的特点。采用折反射式光学系统结构形式,基于J-T制冷型320×320凝视焦平面阵列探测器,设计了一种大相对孔径紧凑型无热化红外光学系统,光学系统远摄比达到0.6。采用光学被动消热差方法进行设计,使该系统在-40 ℃~60 ℃温度范围内实现了无热化。同时采用杂散辐射分析软件对系统进行杂散辐射分析,提出合理杂辐射抑制方案,给出了完整的光学系统设计。结果表明,光学系统在不同温度环境下所有视场的调制传递函数(MTF)(17 lp/mm)均接近衍射极限,80%的能量集中在1个像元内,且具有结构紧凑、体积小等优点,可满足搜索和跟踪红外光学系统的使用要求。
光学设计 红外光学系统 折反射式光学系统 无热化 杂散辐射 
光学学报
2012, 32(3): 0322003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!