Author Affiliations
Abstract
Miniaturized spectrometers have been widely researched in recent years, but few studies are conducted with on-chip multimode schemes for mode-division multiplexing (MDM) systems. Here we propose an ultracompact mode-division demultiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors, which realizes simultaneously spectral dispersing and light fields detecting. In the bandwidth of 1500–1600 nm, the designed spectrometer achieves the single-mode spectral resolution of 7 nm for each mode of TE1–TE4 by Tikhonov regularization optimization. Empowered by deep learning algorithms, the 15-nm resolution of parallel reconstruction for TE1–TE4 is achieved by a single-shot measurement. Moreover, by stacking the multimode response in TE1–TE4 to the single spectra, the 3-nm spectral resolution is realized. This design reveals an effective solution for on-chip MDM spectroscopy, and may find applications in multimode sensing, interconnecting and processing.Miniaturized spectrometers have been widely researched in recent years, but few studies are conducted with on-chip multimode schemes for mode-division multiplexing (MDM) systems. Here we propose an ultracompact mode-division demultiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors, which realizes simultaneously spectral dispersing and light fields detecting. In the bandwidth of 1500–1600 nm, the designed spectrometer achieves the single-mode spectral resolution of 7 nm for each mode of TE1–TE4 by Tikhonov regularization optimization. Empowered by deep learning algorithms, the 15-nm resolution of parallel reconstruction for TE1–TE4 is achieved by a single-shot measurement. Moreover, by stacking the multimode response in TE1–TE4 to the single spectra, the 3-nm spectral resolution is realized. This design reveals an effective solution for on-chip MDM spectroscopy, and may find applications in multimode sensing, interconnecting and processing.
computational spectroscopy 2D-material photodetectors mode-division demultiplexing deep learning silicon photonics 
Opto-Electronic Science
2022, 1(11): 220012
作者单位
摘要
西南交通大学信息光子与通信研究中心,四川 成都 611756
针对光纤传输系统中多重物理损伤效应严重影响传输性能的情况,为保障高速光传输网络的正常运行,对传输信号进行光性能监测是必不可少的。提出一种基于卷积神经网络(CNN)的多任务光性能监测研究方案,将强度轮廓与强度波动特征作为CNN模型输入,对传输信号调制格式与光信噪比(OSNR)进行联合监测。研究结果表明,所有调制格式(28-GBaud PDM-QPSK/-8QAM/-16QAM/-32QAM/-64QAM)均可在20% 前向纠错(FEC)阈值条件(误码率为2.4×10-2)所对应的OSNR下实现100%的识别精度。此外,当强度轮廓特征、强度波动特征和两种特征联合作为神经网络模型输入时,OSNR监测的平均绝对误差分别为0.282 dB、0.245 dB、0.165 dB,均方根误差分别为0.352 dB、0.311 dB、0.218 dB。随后,进一步研究了残余色散度对所提方案监测性能的影响。
光通信 调制格式识别 光信噪比监测 卷积神经网络 偏振解复用 
光学学报
2022, 42(22): 2206002
作者单位
摘要
1 长春理工大学光电工程学院,吉林 长春 130022
2 长春理工大学电子信息工程学院,吉林 长春 130022
3 长春理工大学空间光电技术国家与地方联合工程中心,吉林 长春 130022
为满足日益增长的通信容量需求,空分复用技术得到了快速发展,其中基于多平面光转换的模式复用及解复用混频器由于兼容模式多、插入损耗小等优点而成为了研究热点。为了简化相干通信接收端,本文提出了基于多平面光转换的拉盖尔高斯模解复用混频器,同时实现了模解复用和90°混频功能。本文首先提出拉盖尔高斯模解复用混频器的设计原理及参数定义,并采用基于角谱计算的波前匹配算法建立模解复用混频器模型。然后,基于模型仿真研究了正弦拉盖尔高斯模解复用混频器,仿真结果表明,所设计的混频器的插入损耗为-0.7020 dB,信号光与本振光的耦合系数大于0.89,端口相位差小于10.1°。之后,进一步分析了相位板数量及像素尺寸、工作波长等对输出性能的影响,结果发现:在不考虑相位板反射等外部损耗时,随着相位板数量增加(≥8),插入损耗和模式相关损耗逐渐减小并趋于平稳;工作波长在1500~1600 nm范围时,耦合系数、端口均一性、插入损耗和模式相关损耗变化较小;像素尺寸在3.2~19.2 μm范围时,端口均一性和模式相关损耗变化较为平稳,耦合系数和插入损耗随着像素增大而恶化。最后,考虑到轨道角动量光束在空间光通信领域的广泛应用,在上述基础上进一步设计了轨道角动量光束的模解复用混频器,其性能满足应用要求。本研究结果表明:所提出的基于多平面光转换的拉盖尔高斯模及轨道角动量光束的模解解复用混频器可以同时实现模解复用和90°混频功能,性能较好,且具有较好的波长特性。本方案及仿真分析结果为空分复用技术中关键器件的设计提供了技术参考。
光通信 相干通信 多平面光转换 模解复用混频器 拉盖尔高斯模 轨道角动量 
中国激光
2022, 49(9): 0906002
作者单位
摘要
清华大学 精密仪器系 光子测控技术教育部重点实验室,北京 100084
涡旋光场因其具有光学轨道角动量(Orbital angular momentum, OAM)而倍受关注。OAM这一独特物理特征赋予了涡旋光场一个无限高维的空间自由度,同时也引发了光场奇特的干涉、衍射、传输等性质。OAM识别和探测技术的发展是涡旋光从基础研究走向应用的关键。文中聚焦于OAM探测领域的一个重点研究方向——涡旋光几何坐标变换技术。详细介绍了该技术的基本原理、优势特点、研究进展和应用情况。涡旋光几何坐标变换是指通过特殊的调制相位设计,使涡旋光束的空间几何结构发生特殊的变化,从而可通过简单透镜聚焦等方法实现OAM模式的识别、分选等。相较于传统的涡旋光识别和探测技术,涡旋光的几何坐标变换这一新兴技术具有器件无源、无能量损耗、结构紧凑、价格低廉等突出优势,成为涡旋光的空间分离和解复用的高效有力工具,为涡旋光束在经典/量子态密度测量、OAM乘除法器、经典光通信和量子纠缠等前沿应用提供了全新的研究平台,蕴含巨大的发展潜力,具有广阔的发展空间。
涡旋光 几何坐标变换 OAM解复用 模式分类 vortex beams geometric coordinate transformation OAM demultiplexing mode sorting 
红外与激光工程
2021, 50(9): 20210445
作者单位
摘要
哈尔滨工业大学(深圳)电子信息与工程学院, 广东 深圳 518055
为应对概率整形场景下相干光通信系统中的偏振解复用问题,提出了一种基于独立成分分析和极大似然估计的偏振解复用算法。由于各个信号之间相互独立,因此可以对信号采用独立成分分析的手段进行偏振解复用。通过基于最大似然估计的迭代更新寻找最佳的分离矩阵,即偏振解复用矩阵。对所提算法在不同信噪比下的性能及整形强度的容忍度进行了仿真分析。结果表明,所提算法能够应对不同的概率整形强度,在较大的信噪比范围内均能完成良好的偏振解复用。相较于用于标准信号的恒模算法,所提算法并不会受到整形强度的影响,并且随着整形强度的增加,系统的性能有所提升。
光通信 概率整形 偏振解复用 独立成分分析 
光学学报
2021, 41(6): 0606002
作者单位
摘要
河北科技大学信息科学与工程学院,河北石家庄市 050000
万兆通信技术已成为卫星通信领域又一研究热点,为星上设备提供高速可靠的万兆数据源尤为重要。系统采用Xilinx公司新近推出的K7系列现场可编程门阵列(FPGA),利用其吉比特收发(GTX)接口模块和万兆媒体访问控制(MAC)软核实现了万兆协议转换功能。通过状态机设计方法实现了以太网协议帧和专用链路协议帧之间的相互转换。通过测试结果可知,系统达到了每通道10 Gb/s的转换带宽,总带宽达到40 Gb/s,能够满足星上设备的测试需要。
现场可编程门阵列 协议转换 万兆位 复接 分接 Field Programmable Gate Array protocol conversion 10 gigabit multiplexing demultiplexing 
太赫兹科学与电子信息学报
2020, 18(2): 202
作者单位
摘要
聊城大学 物理科学与信息工程学院, 山东 聊城 252059
在正方格二维光子晶体结构中设计了基于可调谐谐振腔的带通滤波器, 通过改变1×5谐振腔侧边调谐介质柱位置调节谐振腔与波导系统工作时传输的波段, 用CMT理论分析了输入端耦合衰减率及输入端失谐因子对滤波器的影响。借助FDTD方法得到了滤波器波长传输谱, 结果表明:当滤波器结构工作于1320~1810 nm波长段时, 输出端38个通帯的-3 dB带宽Δλ范围为4.18~11.15 nm, 通带峰值波长可调宽度为186.56 nm。该微型滤波器适于光电通信粗波分解复用WDDM系统设计和光集成设计等方面。
介质柱调谐 波分解复用 输入端失谐因子 时域有限差分 耦合模理论 光子晶体滤波器 dielectric rod tuning Wavelength Division Demultiplexing(WDDM) input port detuning factor finite difference time domain(FDTD) Coupled-Mode Theory(CMT) photonic crystal filter 
强激光与粒子束
2019, 31(1): 014101
作者单位
摘要
国防科技大学 文理学院, 湖南 长沙 410073
从理论上和数值上研究了一种基于金属-绝缘体-金属波导耦合纳米腔的等离子体三波分复用结构。该结构由三个输出通道组成, 每个通道由两个纳米腔分布于直波导两侧。通过改变环的几何参数、填充介质和内圆和外圆的相对位置, 可以动态地调节每个通道的反射和透射光谱。最后, 根据三个通道的反射和透射特性, 研究了在三个通信波长1 310、1 490和1 550 nm处实现的解复用, 并具有优良的性能。将时域耦合模理论和时域有限差分法(FDTD)结合起来进行仿真和分析, 为芯片集成全光电路的应用提供了可能。
等离子体 解复用 时域有限差分法 金属绝缘体金属 纳米腔 plasmonic demultiplexing finite-difference time-domain metal-insulator-metal nanoring cavity 
红外与激光工程
2019, 48(2): 0221001
作者单位
摘要
聊城大学 物理科学与信息工程学院, 山东 聊城 252059
考虑到滤波器输入波导中入射电磁波和反射电磁波的相位差, 通过CMT理论分析了不同设计情况下的工作性能, 然后优化设计了光子晶体1×3谐振腔滤波器结构.用FDTD方法研究了滤波器工作特性, 改变1×3谐振腔下侧调谐柱位置得到滤波器结构的96个不同通带峰值波长平均正规化传输率为89.6%, 相邻峰值波长平均间隔为1.25 nm、平均传输带宽为1.19 nm、谐振腔平均品质因数为1 350.2、提取的峰值波长调谐范围在1 534.04~1 653.16 nm.结果表明:该滤波器具有正规化传输率高、带宽窄、波长信号提取强度平稳等特性.其结构在密集型波分解复用 (DWDDM)系统设计、光信号传感器件设计、密集型光路集成化设计等领域具有潜在的应用价值.
光子晶体1×3谐振腔 相位差 时域有限差分法 耦合模理论 密集型波分解复用 滤波器 photonic crystal 1×3 cavity phase difference finite-difference time-domain (FDTD) method coupled mode theory (CMT) coarse wavelength division demultiplexing (CWDDM) filter 
红外与毫米波学报
2018, 37(6): 761
作者单位
摘要
聊城大学物理科学与信息工程学院, 山东 聊城 252059
为获得超宽可调谐光波长信号分束,在二维光子晶体结构中设计了基于微谐振器的光信号分离器;通过耦合模理论定性分析了不同设计情况下光信号分离器的工作性能;用时域有限差分方法研究了两输出端对称的光信号分离器的工作特性,通过调节5×5微型谐振器的结构和整体柱的相对介电常数,分别得到了29个和38个通带,信道波导提取峰值波长与通带宽度的范围分别为1310.0~1655.5 nm和2.0~7.4 nm;该结构具有宽调谐通频带、有效滤除噪声信号以及同一峰值波长光信号等功率分束的特性;提出的结构在粗波分解复用设计、光信号功率均分设计、光学设计集成化等领域具有潜在的应用价值。
集成光学 光信号分离器 微型谐振器 时域有限差分法 耦合模理论 粗波分解复用 宽调谐通带 
激光与光电子学进展
2018, 55(3): 031301

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!