作者单位
摘要
西安邮电大学 电子工程学院, 西安 710061
在高速接口电路中,接收机通常采用连续时间线性均衡器(Continuous-Time Linear Equalizer,CTLE)消除符号间干扰(Inter-Symbol Interference,ISI)对信号传输的影响。为提高CTLE电路的高频增益和减少芯片面积,基于UMC(United Microelectronics Corporation)28nm工艺,设计了一款最大速率为50Gbps的CTLE电路,其主体电路由跨导级联跨阻抗(Trans-Admittance Trans-impedance,TAS-TIS)结构和前馈路径的两级CTLE电路构成。在传统CTLE的基础上,使用有源电感做负载,以反相器为基础构建跨阻放大器和在输入管增加前馈通路等方式,有效地扩展了电路的工作频率。仿真结果显示,均衡后40Gbps PAM4(4-Level Pulse Amplitude Modulation)信号、50Gbps PAM4信号和28Gbps NRZ(Non Return Zero Code)信号的眼图眼宽分别达到了0.68,0.5,0.92个码元间隔(UI),可满足后级电路对于输入信号的要求,对提升整体传输数据速率具有重要的意义。
连续时间线性均衡器 跨导级联跨阻抗 跨阻放大器 前馈通路 continuous-time linear equalizer (CTLE) trans-admittance transimpedance (TAS-TIS) transimpedance amplifier (TIA) feed-forward path 
半导体光电
2023, 44(5): 736
作者单位
摘要
1 南京理工大学 机械工程学院,江苏南京20094
2 吉林大学 机械与航空航天工程学院,吉林长春13005
3 上海交通大学 机械与动力工程学院,上海200240
三轴快速刀具伺服(Fast Tool Servo, FTS)具有更高的刀具空间运动柔性,逐渐用于复杂光学曲面和微纳结构表面的切削加工。针对所研制电磁-压电混合驱动三轴FTS存在的轴间耦合、高频谐振和迟滞非线性等因素对轨迹跟踪性能的影响,研究综合补偿策略实现三轴空间轨迹的高性能跟踪控制。以陷波滤波器抑制系统高频谐振,以前馈解耦补偿弱化平面轴间耦合;针对法应力电磁驱动和压电驱动的迟滞非线性,提出以线性动力学模型级联Prandtl-Ishlinskii模型描述各轴的动态迟滞特性,并构建无需直接求逆的迟滞前馈补偿模型,实现系统的迟滞非线性补偿。谐波扫频测试结果表明:所采用的陷波滤波器可以很好地消除高频谐振,前馈解耦补偿可将平面XY轴间的耦合幅值降低约14 dB。宽频域内迟滞建模结果表明:平面XY轴和Z轴的动态迟滞建模误差分别小于±2.2%和±1.8%。以PID为主控制器,对宽频谐波(10~100 Hz)的跟踪结果表明:采用综合补偿策略获得各轴的最大跟踪误差约为仅采用逆动力学前馈补偿的25%~50%,进一步对空间螺旋球面轨迹进行了跟踪测试,证明了所构建的综合补偿控制策略的有效性。
快速刀具伺服 轨迹跟踪控制 陷波滤波器 前馈解耦补偿 动态迟滞模型 fast tool servo trajectory tracking control notch filter feed-forward decoupling compensation dynamic hysteresis model 
光学 精密工程
2023, 31(15): 2236
作者单位
摘要
吕梁学院, 山西 吕梁 033000
提出了一种采用双调零电阻嵌套密勒补偿的方法,设计了一种具有高增益前馈跨导级的大电容驱动放大器。该放大器在无需严格无源补偿元件匹配要求的情况下,获得了高增益带宽积和大相角裕度,从而增强了设计系统对工艺、电压、温度变化的抗干扰性。该放大器结构简单,可应用于具有轨对轨输入和输出的放大器。给出了一个基于0.35 μm CMOS工艺的三级轨-轨AB类放大器的设计实例,测试了放大器的性能。结果表明,在200 kΩ电阻负载与600 pF容性负载并联的条件下,增益带宽积为4.4 MHz,相角裕度为85°,功耗为3.6 mW,总谐波失真THD为0.25%。该放大器适用于高输出驱动器件。
运算放大器 嵌套密勒补偿 前馈跨导 operational amplifier nested-Miller compensation feed-forward transconductance 
微电子学
2022, 52(5): 879
作者单位
摘要
1 长春理工大学光电工程学院,吉林长春 130012
2 中国科学院长春光学精密机械与物理研究所,吉林长春 130033
针对某机载平台中钢丝绳传动带来的非线性误差及外部扰动等因素直接影响平台相机成像质量的问题,提出一种模糊自适应前馈补偿的控制策略。首先对钢丝绳传动机构和高精度直流伺服电机进行了建模,并建立了摩擦模型,为转台速度环控制回路引入模糊自适应 PID控制器。设计出前馈补偿和模糊自适应控制器的复合控制策略。Matlab仿真结果以及实验表明该复合策略能有效消除飞机振动和钢丝绳非线性带来的抖动,转台的稳定精度从 1 mrad提高至 0.2 mrad,大幅地提高了成像质量。
稳定平台 模糊 PID 前馈控制 钢丝绳传动 自适应控制 stabilization platform, fuzzy PID, feed forward co 
红外技术
2022, 44(1): 54
Author Affiliations
Abstract
Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network, Suzhou Key Laboratory of Advanced Optical Communication Network Technology, School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
Probabilistically shaped (PS) pulse amplitude modulation (PAM) is a promising technique for intra-data-center networks due to its superior performance, for which a low-complexity and cost-effective distributed matching method is critical. In this work, we propose an energy-level-assigned method to yield PS-PAM-4 signals with various bit rates based on variable probabilistic distributions. We experimentally demonstrate the proposed method in a 25 Gbaud PS-PAM-4 transmission over a bandwidth of approximately 10 GHz. Compared to a uniform PAM-4 system, the proposed multi-distributed PS-PAM-4 system approaches the hard decision threshold at a wide range of received optical power for different applications.
probabilistic shaping pulse amplitude modulation feed-forward equalizer 
Chinese Optics Letters
2021, 19(11): 110604
作者单位
摘要
内江师范学院数学与信息科学学院, 四川 内江 641100
为进一步研究三方远程态制备 (TRSP), 提出了一种不同于已有 TRSP 类型的新方案。该方案为受控三方循环远程态制备的一个推广, 且可修改为一个双向与一个单向受控远程态制备的混合方案。该方案给出了十粒子纠缠信道的产生方法, 并指出在监控者的控制下, 三方中的任何两方都能联合为第三方制备一个任意单粒子态。所提方案融合了受控远程态制备和联合远程态制备的思想, 有较高的安全性, 且所采用的前馈测量策略使得其成功的概率为 100%。此外, 该方案所涉及的受控非门、Hadamard 门 和 Pauli 门以及单粒子测量在现代技术下是可以物理实现的。
量子通信 受控远程态制备 联合远程态制备 十粒子纠缠态 前馈测量策略 quantum communication controlled remote state preparation joint remote state preparation ten-particle entangled state feed-forward measurement strategy 
量子电子学报
2021, 38(1): 66
作者单位
摘要
上海大学 特种光纤与光接入网重点实验室, 上海 200444
先进的调制技术、信道均衡技术和信道编码技术是提高光传输系统性能的三大关键技术。采用双二进制(DB)调制技术、前馈均衡(FFE)技术和低密度奇偶校验(LDPC)编码技术进行光传输实验, 经过25 km的标准单模光纤传输后在12 GHz的光接收器件上完成了50 Gb/s速率的数据传输。实验结果表明: FFE能有效地提升光传输系统性能, 且选用的LDPC码型的译码门限在2×10-2附近。
双二进制调制 前馈均衡 低密度奇偶校验编码 duo binary modulation feed forward equalization low density parity check coding 
光通信技术
2020, 44(11): 59
作者单位
摘要
1 中国航空工业集团公司电光设备研究所, 河南 洛阳 471000
2 光电控制技术重点实验室, 河南 洛阳 471000
压电陶瓷驱动的快速反射镜具有优良的动态性能, 能够满足高精度定位的任务需求, 但其固有的迟滞特性严重影响了其性能的进一步提高。基于PLAY算子的迟滞数学模型具有结构简单、便于数学求解、模型精度较高的优点, 但模型参数需要通过系统辨识得到, 并且其逆模型参数辨识存在物理量不易获得、误差较大的不利条件。利用几何法, 提出了一种求解PI逆模型参数的算法。实验证明该算法动态性能好、模型精度较高, 同时基于该算法的PI逆模型前馈控制较好地解决了压电陶瓷驱动的快反镜迟滞效应补偿问题。
机载光电系统, 快速反射镜, 磁滞效应 PI逆模型 参数辨识 前馈控制 airborne photoelectric system fast steering mirror hysteresis effect PI inverse model pararneter estimation feed-forward control 
电光与控制
2019, 26(1): 47
张伟明 1,2,3,4,*史泽林 1,2,3马德鹏 1,2,3
作者单位
摘要
1 中国科学院沈阳自动化研究所,辽宁 沈阳 110016
2 中国科学院机器人与智能制造创新研究院,辽宁 沈阳 110016
3 中国科学院光电信息处理重点实验室,辽宁 沈阳 110016
4 中国科学院大学,北京 100049
气流随机冲击引起的姿态扰动是飞行器光电系统的主要扰动源,在系统自身转轴摩擦和质量不平衡等因素的作用下,严重影响了光电系统视轴稳定性。为了有效抑制扰动力矩的影响,建立了外俯仰、内方位两轴光电系统动力学模型,给出了扰动因素和运动耦合综合作用下的扰动传递关系。根据系统动力学模型,提出了扩展卡尔曼滤波扰动力矩估计方法,并构建扰动力矩前馈控制回路,实现了对扰动力矩的实时补偿,大大提高了光电系统的稳像控制精度。利用飞行模拟转台对某两轴光电系统进行了半实物仿真实验,结果表明: 在幅值为1°、频率为2 Hz的载体扰动条件下,采用前馈补偿方法系统俯仰和方位框架的视轴稳定精度均方根值分别达到0.026 4 mrad和0.029 0 mrad,相比扰动观测器控制方法分别提高了64.1%和69.6%。
视轴稳定 光电稳像平台 扩展卡尔曼滤波 前馈补偿 line-of-sight stabilization opto-electronic stabilized platform extended Kalman filter feed-forward compensation 
红外与激光工程
2019, 48(10): 1013008
作者单位
摘要
北京信息科技大学 仪器科学与光电工程学院, 北京 100192
为了解决传统比例-微分-积分(PID)控制器在精密光束指向系统(FPB)应用中存在的控制精度与超调量之间的矛盾, 并使其可在现有控制系统硬件平台中应用, 设计了一种数字复合PID控制器。该控制器采用了传统PID、前馈补偿以及抗积分饱和算法三部分综合而成, 在控制器复杂性和处理时间不显著增加的前提下, 缩短了调节时间及过冲, 改善FPB系统的指向精度及动态特性; 对该控制器的结构进行了分析, 并与采用传统PID控制器的FPB进行了对比试验。结果表明, 在相同的实验条件下, 采用复合PID控制器的FPB系统与采用传统PID控制器的FPB系统相比, 调整时间缩短了约11.4%, 最大超调量从12.7%降至1.8%。在现有计算能力受限的控制系统平台上, 可实现FPB系统性能的有效提升。
测量与计量 精密光束指向 前馈补偿 抗饱和积分 measurement and metrology fine pointer of beam feed forward compensation anti-saturation integral 
激光技术
2018, 42(6): 868

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!