作者单位
摘要
江南大学物联网工程学院, 江苏 无锡 214122
针对现有方法在脑肿瘤图像分割上的不足,提出一种基于改进的卷积神经网络的脑肿瘤图像分割算法。将DenseNet和U-net网络结构相融合,以提高对图像特征的提取能力。为了扩大卷积核的感受野,采用了空洞卷积。将分割结果通过完全连接的条件随机场循环神经网络进行精细分割输出,从而得到精确的脑肿瘤分割区域。实验结果表明,与传统的深度学习方法相比,平均Dice可以达到91.64%,算法在准确率上有较好的提升。
图像处理 图像分割 脑肿瘤分割 卷积神经网络 空洞卷积 完全连接的条件随机场循环神经网络 
激光与光电子学进展
2020, 57(14): 141020
作者单位
摘要
1 河北工业大学人工智能与数据科学学院, 天津 300401
2 河北省大数据计算重点实验室, 天津 300401
针对图像语义分割中图像的上下文信息利用不充分、边缘分割不清等问题,提出一种基于多尺度特征提取与全连接条件随机场的网络模型。分别以多尺度形式将RGB图像和深度图像输入网络,利用卷积神经网络提取图像特征;将深度信息作为补充信息添加到RGB特征图,得到语义粗分割结果;采用全连接条件随机场优化语义粗分割结果,最终得到语义精细分割结果。实验结果表明,所提方法提高了图像语义分割的精度,优化了图像语义分割的边缘,具有实际应用价值。
图像处理 图像语义分割 卷积神经网络 多尺度特征 深度学习 全连接条件随机场 
激光与光电子学进展
2019, 56(13): 131007

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!