Author Affiliations
Abstract
1 Technische Universität Darmstadt, Darmstadt, Germany
2 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
3 Laboratoire pour l’Utilisation des Lasers Intenses, CNRS, Ecole Polytechnique, Palaiseau, France
4 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
5 Technische Universität Dresden, Dresden, Germany
6 Helmholtz-Institut Jena, Jena, Germany
We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments (PHELIX) and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments (PEnELOPE) facilities. This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality. Its implementation at PHELIX allowed one to bypass the front-end amplifier, which is known to be a source of pre-pulses. With the bypass, an amplified spontaneous emission contrast of $4.9\times {10}^{-13}$ and a pre-pulse contrast of $6.2\times {10}^{-11}$ could be realized. Due to its high stability, high beam quality and its versatile pump amplifier, the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.
high-intensity laser temporal laser contrast ultrafast optical parametric amplification 
High Power Laser Science and Engineering
2023, 11(4): 04000e48
作者单位
摘要
马克思普朗克核物理研究所,德国 海德堡 69117
强光子辐射导致的自旋极化等离子体是强激光与物质相互作用领域兴起的新研究方向。基于等离子体的自旋极化粒子束在固态材料诊断、原子核结构探测、弱电相互作用分析等方面具有广泛应用。同时,自旋作为电子的固有属性,它可为描述等离子体的行为状态提供新的信息自由度,因此自旋极化信号在强场等离子体自诊断也具有潜在应用。概述了在超强相对论等离子体中,由伽马光子辐射伴随的自旋翻转产生的自旋极化等离子体的物理机制,并对其在超高能量密度等离子体瞬态动力学反演的可能进行了介绍。
激光等离子体相互作用 辐射伴随效应 自旋极化 超强激光 laser-plasma interaction radiation associated effect spin polarization high-intensity laser 
强激光与粒子束
2023, 35(1): 012010
作者单位
摘要
1 广东药科大学健康学院,广州 510310
2 广东省光与健康工程技术研究中心,广州 510310
光子疗法因具有安全、无创、无痛、非侵入、无致瘾和操作方便且疗效显著等特点,已被广泛地应用于疼痛疾病的临床治疗中。本文介绍了基于光子技术的低强度激光疗法、高能量激光疗法、半导体激光疗法以及激光针灸疗法在疼痛缓解方面的研究进展,通过研究疼痛缓解的机制和临床实践手段,为光子技术全面应用于疼痛临床治疗提供理论依据和实践指导。
光子 低强度激光 高能量激光 半导体激光 疼痛 photon low-level laser high-intensity laser semiconductor laser pain 
激光生物学报
2022, 31(4): 295
Author Affiliations
Abstract
1 Helmholtz-Zentrum Dresden-Rossendorf, 01328Dresden, Germany
2 European XFEL, 22869Schenefeld, Germany
3 Extreme Light Infrastructure – Nuclear Physics and Faculty of Physics, University of Bucharest, 077126Magurele, Romania
4 Technische Universität Dresden, 01062Dresden, Germany
High-energy and high-intensity lasers are essential for pushing the boundaries of science. Their development has allowed leaps forward in basic research areas, including laser–plasma interaction, high-energy density science, metrology, biology and medical technology. The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser (EuXFEL) facility. These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam. This paper introduces the ReLaX laser, a short-pulse high-intensity Ti:Sa laser system, and discusses its characteristics as available for user experiments. It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativistic-intensity laser driver.
X-ray free electron laser high-intensity laser relativistic intensity laser Ti:Sa laser 
High Power Laser Science and Engineering
2021, 9(4): 01000e59
Author Affiliations
Abstract
1 Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica - Consiglio Nazionale delle Ricerche (INO-CNR), Sede Secondaria di Pisa, 56124Pisa, Italy
2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, 56127Pisa, Italy
We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory (ILIL) including laser, beam transport and target area specifications. The laboratory was designed to host laser–target interaction experiments of more than 220 TW peak power, in flexible focusing configurations, with ultrarelativistic intensity on the target. Specifications have been established via dedicated optical diagnostic assemblies and commissioning interaction experiments. In this paper we give a summary of laser specifications available to users, including spatial, spectral and temporal contrast features. The layout of the experimental target areas is presented, with attention to the available configurations of laser focusing geometries and diagnostics. Finally, we discuss radiation protection measures and mechanical stability of the laser focal spot on the target.
high-intensity laser laser focusing laser–plasma acceleration laboratory pointing stability radiation shielding ultrashort pulse amplification 
High Power Laser Science and Engineering
2021, 9(2): 02000e10
Author Affiliations
Abstract
1 INFN-LNF, Via Enrico Fermi 54, 00044Frascati, Italy
2 Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, DidcotOX11 0QX, England
3 INFN-LNF, Via Enrico Fermi 54, 00044Frascati, Italy
4 ENEA Fusion and Technologies for Nuclear Safety and Security Department, C.R. Frascati, Via E. Fermi 45, 00044Frascati, Italy
5 ENEA Fusion and Technologies for Nuclear Safety and Security Department, C.R. Frascati, Via E. Fermi 45, 00044Frascati, Italy
6 University of Rome “Tor Vergata”, Industrial Engineering Department, Via Cracovia 50, 00133Roma, Italy
The interaction of ultra-intense high-power lasers with solid-state targets has been largely studied for the past 20 years as a future compact proton and ion source. Indeed, the huge potential established on the target surface by the escaping electrons provides accelerating gradients of TV/m. This process, called target normal sheath acceleration, involves a large number of phenomena and is very difficult to study because of the picosecond scale dynamics. At the SPARC_LAB Test Facility, the high-power laser FLAME is employed in experiments with solid targets, aiming to study possible correlations between ballistic fast electrons and accelerated protons. In detail, we have installed in the interaction chamber two different diagnostics, each one devoted to characterizing one beam. The first relies on electro-optic sampling, and it has been adopted to completely characterize the ultrafast electron components. On the other hand, a time-of-flight detector, based on chemical-vapour-deposited diamond, has allowed us to retrieve the proton energy spectrum. In this work, we report preliminary studies about simultaneous temporal resolved measurements of both the first forerunner escaping electrons and the accelerated protons for different laser parameters.
electro-optic sampling diagnostics high-power laser laser–plasma interaction time-of-flight diagnostics target normal sheath acceleration ultrashort high-intensity laser pulses 
High Power Laser Science and Engineering
2020, 8(2): 02000e23
Author Affiliations
Abstract
1 INFN-LNF, Via Enrico Fermi 40, 00044 Frascati, Italy
2 Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
3 GoLP Instituto de Plasmas e Fusão Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisbon, Portugal
4 Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
Interaction between high-intensity lasers with solid targets is the key process in a wide range of novel laser-based particle accelerator schemes, as well as electromagnetic radiation sources. Common to all the processes is the generation of femtosecond pulses of relativistic electrons emitted from the targets as forerunners of the later-time principal products of the interaction scheme. In this paper, some diagnostics employed in laser–solid matter interaction experiments related to electrons, protons, ions, electromagnetic pulses (EMPs) and X-rays are reviewed. Then, we present our experimental study regarding fast electrons and EMPs utilizing a femtosecond-resolution detector previously adopted only in accelerator facilities.
high power laser laser–plasma interaction pulsed electric field diagnostic ultra-short high-intensity laser pulses 
High Power Laser Science and Engineering
2019, 7(3): 03000e56
Hang Yuan 1Yulei Wang 1,3,†Qiang Yuan 2Dongxia Hu 2[ ... ]Zhiwei Lü 1,3,†
Author Affiliations
Abstract
1 National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
2 Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
3 School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
Laser pulses of 200 ps with extremely high intensities and high energies are sufficient to satisfy the demand of shock ignition, which is an alternative path to ignition in inertial confinement fusion (ICF). This paper reports a type of Brillouin scheme to obtain high-intensity 200-ps laser pulses, where the pulse durations are a challenge for conventional pulsed laser amplification systems. In the amplification process, excited Brillouin acoustic waves fulfill the nonlinear optical effect through which the high energy of a long pump pulse is entirely transferred to a 200-ps laser pulse. This method was introduced and achieved within the SG-III prototype system in China. Compared favorably with the intensity of $2~\text{GW}/\text{cm}^{2}$ in existing ICF laser drivers, a 6.96-$\text{GW}/\text{cm}^{2}$ pulse with a width of 170 ps was obtained in our experiment. The practical scalability of the results to larger ICF laser drivers is discussed.
frequency matching high-intensity laser pulse stimulated Brillouin scattering 
High Power Laser Science and Engineering
2019, 7(3): 03000e41
作者单位
摘要
1 西安邮电大学 电子工程学院, 陕西 西安 710121
2 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
以强激光系统和自聚焦理论的研究为出发点, 主要采用光束传输法和光线追迹法分析了非线性介质下的强激光光束传输过程。并且, 基于适合于非线性介质下光线追迹的亚当斯法和基于梯度信息的光强分布的恢复算法, 仿真模拟出光强与透镜厚度、介质折射率、透镜曲率半径以及入射光束半径的关系; 同时结合光学设计软件, 不仅得出了折射率与光强的乘积与焦点位置的变化关系, 还通过点列图中的数据直观地反映出系统结果的成像质量, 最后对光线追迹法和光束传输法两种光学方法进行了对比分析。仿真分析结果可以判断出系统的哪些部分容易受到自聚焦的影响, 进而可以通过改进某些参数的大小, 减少并消除其不利影响, 找到适合于强激光系统的最优方法。
强激光系统 自聚焦效应 非线性介质 光束传输法 光线追迹法 high intensity laser system self-focusing effect nonlinear medium beam transmission method ray tracing method 
红外与激光工程
2019, 48(7): 0706003
Author Affiliations
Abstract
Racah Institute of Physics, Hebrew University, Jerusalem, 91904, Israel
Enhanced acceleration of protons to high energy by relatively modest high power ultra-short laser pulses, interacting with snow micro-structured targets was recently proposed. A notably increased proton energy was attributed to a combination of several mechanisms such as localized enhancement of the laser field intensity near the tip of $1~\unicode[STIX]{x03BC}\text{m}$ size whisker and increase in the hot electron concentration near the tip. Moreover, the use of mass-limited target prevents undesirable spread of absorbed laser energy out of the interaction zone. With increasing laser intensity a Coulomb explosion of the positively charged whisker will occur. All these mechanisms are functions of the local density profile and strongly depend on the laser pre-pulse structure. To clarify the effect of the pre-pulse on the state of the snow micro-structured target at the time of interaction with the main pulse, we measured the optical damage threshold (ODT) of the snow targets. ODT of $0.4~\text{J}/\text{cm}^{2}$ was measured by irradiating snow micro-structured targets with 50 fs duration pulses of Ti:Sapphire laser.
high intensity laser ion acceleration optical damage threshold 
High Power Laser Science and Engineering
2018, 6(1): 010000e7

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!