作者单位
摘要
中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
超强激光加速产生的高能质子束源在基础物理研究、材料科学、生物医疗等领域具有广泛应用前景。基于激光聚变研究中心的SILEX-II装置,开展了高对比度飞秒激光驱动纳米刷靶质子加速实验研究。采用等离子体镜技术进一步提升激光对比度,有效降低了预脉冲对纳米刷靶结构的影响。相比于平面靶,采用纳米刷靶质子截止能量提高到1.5倍,质子束产额增加近一个量级,成功验证了超高功率密度下纳米刷靶对激光离子加速的增强效果,并且有效提升了质子束空间分布的均匀性。研究结果为高品质质子束源的产生和应用提供了技术途径。
纳米刷靶 激光离子加速 等离子体镜 高品质质子束 nanobrush targets laser ion acceleration plasma mirror high-quality proton beam 
强激光与粒子束
2024, 36(1): 101004
作者单位
摘要
中国工程物理研究院激光聚变研究中心等离子体物理全国重点实验室,四川 绵阳 621900
短脉冲强激光驱动中子源具有微焦点、短脉宽、高注量率的特点,在创新研究和应用方面显示出独特潜力,得到了广泛关注。简要回顾了激光中子源的发展历史和现状,特别是超短脉冲激光驱动束靶中子源的最新研究进展。首先,介绍了激光中子源束流品质提升方面的研究工作。其中,产额提升是激光中子源研究以及实现相关应用的首要问题。当前的研究主要通过反应通道选择、离子加速优化等技术途径来实现激光中子源产额的提升。除了产额提升之外,人们还格外关注激光中子源的方向性提升,提出了削裂反应、逆反应动力学等新方案。其次,介绍了激光中子源参数的诊断方法与现状。通过对激光中子源能谱、角分布、脉宽和源尺寸等参数的精密表征,人们对激光中子源的特性有了更全面的了解,这有力支撑了其应用。最后,回顾了激光中子源目前已开展的应用演示实验。激光中子源适用于部分与传统中子源类似的应用场景,同时基于激光中子源超短脉冲、超高通量等新特性有望拓展出新的独特应用。
激光光学 激光离子加速 激光中子源 超短脉冲激光 
中国激光
2024, 51(1): 0101004
Author Affiliations
Abstract
Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
Characterizing exact energy density distributions for laser-accelerated ion bunches in a medium is challenging due to very high beam intensities and the electro-magnetic pulse emitted in the laser–plasma interaction. Ion-bunch energy acoustic tracing allows for reconstructing the spatial energy density from the ionoacoustic wave generated upon impact in water. We have extended this approach to tracing ionoacoustic modulations of broad energy distributions by introducing thin foils in the water reservoir to shape the acoustic waves at distinct points along the depth–dose curve. Here, we present first simulation studies of this new detector and reconstruction approach, which provides an online read-out of the deposited energy with depth within the centimeter range behind the ion source of state-of-the-art laser–plasma-based accelerators.
ion-bunch energy acoustic tracing ion detector ionoacoustics laser-ion acceleration 
High Power Laser Science and Engineering
2023, 11(3): 03000e42
Author Affiliations
Abstract
1 Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching, Germany
2 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
3 Technische Universität Dresden, Dresden, Germany
The acoustic pulse emitted from the Bragg peak of a laser-accelerated proton bunch focused into water has recently enabled the reconstruction of the bunch energy distribution. By adding three ultrasonic transducers and implementing a fast data analysis of the filtered raw signals, I-BEAT (Ion-Bunch Energy Acoustic Tracing) 3D now provides the mean bunch energy and absolute lateral bunch position in real-time and for individual bunches. Relative changes in energy spread and lateral bunch size can also be monitored. Our experiments at DRACO with proton bunch energies between 10 and 30 MeV reveal sub-MeV and sub-mm resolution. In addition to this 3D bunch information, the signal strength correlates also with the absolute bunch particle number.
ion diagnostics ionoacoustics laser-driven plasma source laser-ion acceleration 
High Power Laser Science and Engineering
2023, 11(3): 03000e38
Author Affiliations
Abstract
1 Institute of Laser Engineering, Osaka University, Suita, Japan
2 National Institutes for Quantum Science and Technology, Tokai, Japan
3 Tokamak Energy Ltd., Abingdon, UK
4 Graduate School of Engineering, Osaka University, Suita, Japan
5 Fukui University of Technology, Fukui, Japan
We predict the production yield of a medical radioisotope ${}^{67}$ Cu using ${}^{67}$ Zn(n, p) ${}^{67}$ Cu and ${}^{68}$ Zn(n, pn) ${}^{67}$ Cu reactions with fast neutrons provided from laser-driven neutron sources. The neutrons were generated by the p+ ${}^9\mathrm{Be}$ and d+ ${}^9$ Be reactions with high-energy ions accelerated by laser–plasma interaction. We evaluated the yield to be (3.3 $\pm$ 0.5) $\times$ 10 ${}^5$ atoms for ${}^{67}$ Cu, corresponding to a radioactivity of 1.0 $\pm$ 0.2 Bq, for a Zn foil sample with a single laser shot. Using a simulation with this result, we estimated ${}^{67}$ Cu production with a high-frequency laser. The result suggests that it is possible to generate ${}^{67}$ Cu with a radioactivity of 270 MBq using a future laser system with a frequency of 10 Hz and 10,000-s radiation in a hospital.
laser ion acceleration laser-driven neutron source medical radioisotope 
High Power Laser Science and Engineering
2023, 11(2): 02000e20
作者单位
摘要
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
CR39可以用于激光等离子物理实验中的离子探测,并给出离子数目、种类和能量信息。通过采用唯象模型,利用离子在CR39中径迹形成的阻止本领动力学方程以及粒子群智能算法对径迹形成的过程进行了数值化模拟,研究了CR39中离子径迹在刻蚀过程中的演化过程,获得了入射离子能量和径迹直径、深度的对应关系,并且发现当离子射程与刻蚀深度相等时,径迹深度最大,给出了利用总刻蚀时间计算最大径迹深度对应的临界能量的公式。
激光离子加速 离子阻止本领 径迹刻蚀 粒子群智能算法 CR39 CR39 laser ion acceleration ion energy loss track etching particle swarm optimization (PSO) 
强激光与粒子束
2019, 31(5): 056006
Author Affiliations
Abstract
1 GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Planckstra?e 1, 64291 Darmstadt, Germany
2 Helmholtz Institut Jena, Fr¨obelstieg 3, 07743 Jena, Germany
3 Institut fur Kernphysik, Technische Universitat Darmstadt, Schlossgartenstra?e 9, 64289 Darmstadt, Germany
4 Institute for Theoretical Physics, Frankfurt University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
Using the example of the PHELIX high-energy short pulse laser we discuss the technical preconditions to investigate ion acceleration with submicrometer thick targets. We show how the temporal contrast of this system was improved to prevent pre-ionization of such targets on the nanosecond timescale. Furthermore the influence of typical fluctuations or uncertainties of the on-target intensity on ion acceleration experiments is discussed. We report how these uncertainties were reduced by improving the assessment and control of the on-shot intensity and by optimizing the positioning of the target into the focal plane. Finally we report on experimental results showing maximum proton energies in excess of 85 MeV for ion acceleration via the target normal sheath acceleration mechanism using target thicknesses on the order of one micrometer.
high-power laser technique high-power laser technique laser-ion acceleration laser-ion acceleration relativistic laser plasma interaction relativistic laser plasma interaction target normal sheath acceleration target normal sheath acceleration temporal contrast temporal contrast 
High Power Laser Science and Engineering
2016, 4(4): 04000e45
Author Affiliations
Abstract
1 Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, Am Coulombwall 1, D-85748 Garching, Germany
2 Max-Planck-Institut fur Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
3 The John Adams Institute, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
Experiments have shown that the ion energy obtained by laser–ion acceleration can be optimized by choosing either the appropriate pulse duration or the appropriate target thickness. We demonstrate that this behavior can be described either by the target normal sheath acceleration model of Schreiber et al. or by the radiation pressure acceleration model of Bulanov and coworkers. The starting point of our considerations is that the essential property of a laser system for ion acceleration is its pulse energy and not its intensity. Maybe surprisingly we show that higher ion energies can be reached with reduced intensities.
laser–ion acceleration relativistic laser plasma interaction 
High Power Laser Science and Engineering
2014, 2(4): 04000e41
Author Affiliations
Abstract
1 Department of Advanced Interdisciplinary Sciences, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585, Japan
2 CORE (Center for Optical Research and Education), Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585, Japan
3 School of Computer Engineering and Sciences, Shanghai University, Shanghai 200444, China
4 Institute of Modern Physics, Fudan University, Shanghai 200433, China
5 Department of Physics, National University of Defense Technology, Changsha 410073, China
6 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
An ion beam has the unique feature of being able to deposit its main energy inside a human body to kill cancer cells or inside material. However, conventional ion accelerators tend to be huge in size and cost. In this paper, a future intenselaser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, and the ion particle energy control. In the study, each component is designed to control the ion beam quality by particle simulations. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical-density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser–target interaction.
Intense short-pulse laser laser ion acceleration laser ion cancer therapy laser–plasma interaction 
High Power Laser Science and Engineering
2014, 2(1): 010000e4
作者单位
摘要
中国工程物理研究院 激光聚变研究中心, 等离子体物理重点实验室, 四川 绵阳 621900
分别利用单能的质子束及碳离子束辐照CR39,并制定了规范的刻蚀条件及流程。通过对处理完成后的数据进行详细处理,得到了质子及碳离子的径迹直径能量的响应曲线,可用于确定CR39上质子或碳离子的能量。以此为依据,得到了鉴别CR39上质子及碳离子的有效方法。在激光加速离子的实验中,通过测量CR39上的径迹大小及相对灰度,利用本文给出的标定数据,确认了质子径迹,得到了实验的质子能谱。
激光加速离子 鉴别离子 单能离子 CR39标定 laser ion acceleration ion identification monoenergetic ions calibration of CR39 
强激光与粒子束
2013, 25(2): 381

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!