作者单位
摘要
1 南京航空航天大学 航天学院,江苏 南京 211106
2 安徽北方微电子研究院,安徽 蚌埠 233000
硅基光电子与CMOS工艺兼容,借助成熟的微电子加工工艺平台可以实现大规模批量生产,具有低成本、高集成度、高可靠性的优势。其中,硅基半导体探测器是目前应用最为广泛的可见光波段探测设备,将其工作频段拓展到近红外波段具有重要意义。由于硅的禁带宽度,硅基材料在近红外波段电磁波吸收存在明显限制,硅基探测器在近红外波段的应用受到挑战。根据纳米金属粒子发生局域表面等离子共振时产生的近场增强效应,提出了一种纳米金属粒子梯度掺杂的硅基结构。通过应用等效介质理论,模拟了复合硅基结构在可见光与近红外波段的吸收特性。结果表明:该结构在近红外波段具有电磁波吸收提升效果,并且当选择纳米金粒子梯度递增掺杂时,可以在610~1450 nm波段提升吸收性能,最高提升可达到10.7 dB。所提出的结构可以有效增强硅基材料在近红外波段的吸收效率,研究结果为硅基半导体探测器在近红外波段的应用提供了重要参考。
超材料 梯度掺杂 等效介质理论 近红外吸收增强 metamaterials gradient doping effective medium theory near infrared absorption enhancement 
红外与激光工程
2024, 53(2): 20230519
吴君 1曲松楠 1,2,3,*
作者单位
摘要
1 澳门大学应用物理及材料工程学院 教育部联合重点实验室, 中国 澳门 999078
2 澳门大学科技学院 物理化学系, 中国 澳门 999078
3 澳门大学 教育部精准肿瘤学前沿科学中心, 中国 澳门 999078
碳点(CDs)作为一种新型光热纳米材料引起了肿瘤治疗领域的关注。然而,作为光热剂,碳点在深红(DR)至近红外(NIR)区域的光热转换效率有限。此外,碳点对肿瘤组织的靶向性也是急需解决的一个重要问题。本综述介绍了一些增强碳点深红或近红外吸收和光热转换效率的实用策略,包括尺寸调整、元素掺杂、表面修饰、半导体耦合和生物大分子包覆等。基于这些策略可以构建合适的碳点及其复合物,实现对肿瘤的靶向光热治疗。最后,我们希望建立高效的肿瘤识别和光热治疗一体化系统,实现碳点在肿瘤治疗中的临床应用,并为解决肿瘤相关问题和促进健康发展提供重要的科学意义和应用价值。
碳点 近红外吸收 光热特性 光热疗法 carbon dots near-infrared absorption photothermal property photothermal therapy 
发光学报
2024, 45(1): 11
作者单位
摘要
滁州学院材料与化学工程学院, 安徽 滁州 239000
以聚二甲基硅氧烷(PDMS)改性环氧树脂(HYSZ)为粘合剂, Sm2O3为功能颜料, 纳米SiO2为微纳结构改性剂, 制备得到了一种同时具有良好疏水性能和附着力的近红外吸收涂层。 系统分析了PDMS和HYSZ质量比、 邻苯二甲酸二辛酯(DOP)添加量、 总填料添加量、 Sm2O3和纳米SiO2质量比对涂层性能的影响。 结果表明: PDMS改性可明显降低涂层的表面能, 从而使涂层的疏水性得到明显增强。 利用DOP强化涂层韧性和微观搭桥作用可增强涂层整体性, 从而可明显提高涂层的附着力和近红外吸收性能。 涂层的表面粗糙度可随总填料添加量的增加而明显升高, 进而可使涂层表现出更优的疏水性能。 当涂层中PDMS和HYSZ质量比、 DOP添加量、 总填料添加量、 Sm2O3和纳米SiO2质量比分别为1∶9, 20%, 50%和5.5∶4.5时, 涂层同时具有良好的近红外低反射率(59.1%)、 疏水性能(水接触角为137°)及附着力(2级)。
复合涂层 近红外吸收 疏水性 力学性能 Composite coatings Near-infrared absorption Hydrophobicity Mechanical properties 
光谱学与光谱分析
2022, 42(9): 2855
作者单位
摘要
西安工业大学光电工程学院,陕西 西安 710021
为了增强通信系统中光电探测器件对波长为1550 nm的光的吸收,提出一种包含硅栅、纳米银球和缓冲层的微纳复合结构。借助金属表面等离子激元共振局域场增强效应,以及硅栅的陷光效应和耦合作用,可以提高复合微纳阵列结构对光的吸收。利用时域有限差分法计算仿真光经过填充银纳米球和氧化铝的硅栅复合微结构阵列后的光场分布,分析硅柱阵列占空比、硅柱边长、高度以及填充物等对吸收性能的影响。仿真结果表明,当硅栅等线或等间隔、硅柱边长为800~1000 nm、硅柱间隙内填充纳米银球的直径为间隙宽度的一半且铺满间隙底部并覆盖氧化铝时,复合结构的吸收率随着硅柱阵列周期和柱高的不同能够达到0.2288~0.5753,对波长为1550 nm的近红外光具有显著增强吸收的作用。
光栅 近红外吸收 表面等离子激元共振 场增强 金属-硅栅复合微结构 
激光与光电子学进展
2021, 58(7): 0705001
作者单位
摘要
西安工业大学光电工程学院, 陕西 西安 710021
亚波长光栅结构的光学表面具有减反特性,这种特性在光电转换效率的应用方面具有重要意义。为了提高硅基光栅结构在近红外波段(0.78~2.50 μm)的吸收率,采用在硅表面光栅空隙处加入金属Ag纳米颗粒和Al2O3介质层的方法,利用FDTD软件仿真研究不同的组合结构及颗粒的直径对光吸收率的影响,分析不同的工作波长下组合结构中特征截面的光强分布。实验结果表明,当光栅线/间比为1∶1、周期为1 μm、周期凹槽内放置两层直径为0.25 μm的金属Ag颗粒、且凹槽内金属颗粒上方填充覆盖Al2O3介质层时,该组合微结构在近红外波段范围内的平均吸收率理论上可达到0.463,实现吸收增强的效果。在光电转换器件的应用方面,金属颗粒-硅光栅-介质层组合微结构可以增强光吸收,进而提高光电转换效率。
表面光学 光吸收增强 近红外吸收 金属-硅栅-匹配介质层组合结构 表面等离激元 
光学学报
2020, 40(21): 2124003
严雪俊 1严俊 1,2方飚 1陶金波 3[ ... ]张俭 2,*
作者单位
摘要
1 浙江方圆检测集团股份有限公司, 浙江 杭州 310013
2 浙江工业大学材料科学与工程学院, 浙江 杭州 310014
3 浙江省产品质量安全检测研究院, 浙江 杭州 310013
以液氮温度(约77 K)至室温渐变的样品测试温度,通过紫外-可见-近红外(UV-Vis-NIR)吸收光谱、405 nm激发光源的光致发光(PL)光谱,结合傅里叶变换红外光谱与钻石观测仪(DiamondView TM),分别对典型的经后期高温高压或辐照处理的天然钻石、高温高压合成钻石和化学气相沉积合成钻石进行光谱学特征研究。结果表明:在不同激发光源或检测环境温度下,钻石的UV-Vis-NIR吸收光谱与PL光谱中具有指向性的特征吸收与已有文献报道结果存在一定的差异。钻石的指纹及其经优化处理的特征吸收较多出现明显的温敏特性,随着样品温度的升高,吸收峰的强度逐渐降低,部分吸收峰消失。钻石吸收光谱中的温敏特征吸收可为其检测、筛选提供指向性依据,同时对开拓新的钻石功能化应用有借鉴意义。
光谱学 钻石 紫外-可见-近红外吸收光谱 光致发光光谱 温敏性 鉴定 
光学学报
2019, 39(9): 0930005
作者单位
摘要
1 滁州学院材料与化学工程学院,安徽滁州 239000
2 南京航空航天大学材料科学与技术学院,江苏南京 211106
以 Sm2O3为颜料,环氧改性有机硅为粘合剂,采用喷涂法制备了环氧改性有机硅/Sm2O3复合涂层。系统研究了热处理温度及热处理时间对所制备涂层微结构、近红外吸收性能及力学性能的影响。结果表明:环氧改性有机硅 /Sm2O3复合涂层最高可耐受温度可达到 300℃,在 300℃下热处理 5h后,涂层微结构保持不变,对 1.06 .m近红外光的反射率可低至 47.7%,涂层的硬度可达到 4H,附着力 2级,耐冲击强度 40 kg.cm。所制备涂层在 250℃下可长时间使用,在 250℃下热处理 100 h后,涂层微结构仍然保持不变,对 1.06 .m近红外光的反射率可低至 49.7%,涂层的硬度、附着力和耐冲击强度可分别保持在 4 H、2级和 40 kg.cm。
复合涂层 环氧改性有机硅 近红外吸收 耐温性能 composite coatings epoxy-modified silicone Sm2O3 Sm2O3 near-infrared absorption heat resistance 
红外技术
2016, 38(9): 788
作者单位
摘要
1 滁州学院 材料与化学工程学院,安徽 滁州 239000
2 南京航空航天大学 材料科学与技术学院,江苏 南京 211106
以聚氨酯(PU)为粘合剂,Sm2O3 为颜料,采用刮涂法制备了PU/Sm2O3 复合涂层。采用近红外反射光谱及涂层力学性能测试方法系统研究了涂层的近红外吸收性能与力学性能。结果表明,Sm2O3 可使涂层具备对1.06 μm 与1.54 μm 特殊近红外光的强吸收特性,PU 可使涂层具备优良的力学性能。当涂层处于最佳条件(Sm2O3 含量40%(w),涂层厚度96 μm)时,涂层的附着力可以达到1 级,耐冲击强度可以达到40 kg?cm,对1.06 μm 与1.54 μm 特殊近红外光的反射率分别可以低至58.7%和34.7%。所制备的PU/Sm2O3 复合涂层有望成为一种新型的具备优良力学性能的近红外吸收材料。
复合涂层 近红外吸收 力学性能 反射光谱 composite coatings near-infrared absorption mechanical properties reflection spectra 
红外技术
2016, 38(2): 0102
作者单位
摘要
1 宁波大学光电子功能材料重点实验室, 浙江 宁波 315211
2 宁波工程学院化学工程系, 浙江 宁波 315016
采用新型超声喷雾法技术,把摩尔分数都为0.5%的Cu(NO3)2和Na2S水溶液分别作为初始反应溶液,调节溶液体系的pH值在6~8,把经过超声雾化后的Cu(NO3)2溶液逐步加入到处于强力搅拌的Na2S水溶液中,经陈化过滤后获得纳米半导体硫化铜(CuxS, 1≤x≤2)粉体。分析了不同热处理温度与原料配比对获得的硫化铜纳米颗粒化学成分的影响,用X射线粉末衍射仪表征了纳米硫化铜粒子的晶相与化学组成,并采用扫描电镜观察了相应化学组成的粒子晶相形貌, 测定了不同化学组分纳米硫化铜粒子从可见到近红外胶体状的吸收和透射光谱。研究表明不同化学组成的纳米硫化铜对近红外光都具有显著的吸收效应,这是由于电子在硫化铜半导体纳米粒子能带中的跃迁所致, 同时这些半导体粒子对可见光具有很高透过性,但其可见光透射率随着纳米粒子从Cu2S趋向CuS而略有下降。
材料 纳米硫化铜 超声喷雾法 能带跃迁 近红外吸收 太阳能热屏蔽 
光学学报
2013, 33(1): 0116001
Author Affiliations
Abstract
1 School of Information Science and Engineering and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan, 250100, China
2 School of Shandong Provincial Party Committee of Communist Party of China, Jinan, 250021, China
Scanning the absorption spectral line of water vapor through wavelength around 1368.597nm is successfully used to measure the value of micro-moisture content. The synchronous superposition average of original signal algorithm based on labview is innovated and applied to detecting weak spectrum absorption signal instead of low pass filter. Two data processing methods are used to get the concentration of water vapor in ppm: one is a general formula method which has newly deduced a general formula to calculate the concentration of gas with temperature and beam intensity ratio when the pressure is equal to or greater than 1atm; the other is engineering calibration method which is proved to have high resolution and accuracy with the fitted curve of beam intensity ratio and concentration in ppm when the temperature changes form 258K to 305K and the pressure ranges from 1atm to 5 atm.
Water-vapor detection scanning spectra detecting under high gas pressure near-infrared absorption measurement technology ha 
Photonic Sensors
2012, 2(1): 71

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!