Author Affiliations
Abstract
1 Tsinghua University, Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Beijing, China
2 National University of Defense Technology, College of Advanced Interdisciplinary Studies, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, Changsha, China
On-chip diffractive optical neural networks (DONNs) bring the advantages of parallel processing and low energy consumption. However, an accurate representation of the optical field’s evolution in the structure cannot be provided using the previous diffraction-based analysis method. Moreover, the loss caused by the open boundaries poses challenges to applications. A multimode DONN architecture based on a more precise eigenmode analysis method is proposed. We have constructed a universal library of input, output, and metaline structures utilizing this method, and realized a multimode DONN composed of the structures from the library. On the designed multimode DONNs with only one layer of the metaline, the classification task of an Iris plants dataset is verified with an accuracy of 90% on the blind test dataset, and the performance of the one-bit binary adder task is also validated. Compared to the previous architectures, the multimode DONN exhibits a more compact design and higher energy efficiency.
optical computing mode multiplexing diffraction optical neural network 
Advanced Photonics Nexus
2024, 3(2): 026007
作者单位
摘要
南京邮电大学通信与信息工程学院,江苏 南京 210003
面向数字图像识别,使用光学器件构建基于快速傅里叶变换(FFT)的光学神经网络(ONN),其中的线性光学处理单元由马赫-曾德尔干涉仪(MZI)实现。这些MZI以网格状布局连接,对通过的光信号进行调制,实现乘法和加法,从而实现对图像的分类识别。针对该ONN对手写数字图像进行识别出现的问题,研究训练算法中的主要超参数即动量系数和学习率对网络性能的影响。首先比较不同学习率下随机梯度下降(SGD)、均方根传递(RMSprop)、适应性矩估计(Adam)和自适应梯度(Adagrad)4种训练算法结合不同非线性函数和不同隐藏层个数后,ONN在识别手写数字图像上的表现。实验结果显示:在学习率从0.5变化到5×10-5、RMSprop训练算法下,具有2个隐藏层、非线性函数为Softplus的FFT型ONN具有最高的识别精确度,达97.4%。此外,着重分析在具有不同动量系数的SGD算法结合不同非线性函数和不同隐藏层个数时ONN对手写数字图像识别的准确率、运行内存和训练时间的影响。进一步,在学习率为0.05和0.005时,比较了SGD、RMSprop训练算法以及各自在引入动量后的网络识别性能。实验结果显示:动量系数为0时,采用SGD算法训练的具有2个隐藏层、非线性函数为Softplus的ONN的识别精度为96%,动量系数为0.9时,ONN的识别精度提高到96.9%;而加入动量的RMSprop算法会导致网络识别准确率不收敛或收敛较慢。
光学神经网络 马赫-曾德尔干涉仪 训练算法 动量 学习率 
激光与光电子学进展
2023, 60(22): 2220001
作者单位
摘要
国防科技大学电子科学学院,湖南 长沙 410073
当前物联网、云计算等产生的海量非结构化数据,极大提高了对数据处理算力和能效的需求。神经形态计算借鉴生物大脑的信息处理方式,以神经元与神经突触为基本单元,从互联架构与信息处理模式等方面模拟生物神经系统,能够实现实时、超低功耗信息处理,成为大数据时代计算技术发展的前沿热点。其中,光子神经形态计算技术是在光域上进行神经形态计算数据处理的技术,既能够充分发挥光子高速传输、低功耗、高并行度的优势,又能够避免光电和电光转换带来的额外时间功耗开销,具有很大的研究和应用价值。近年来,相变材料作为一种具有高折射率对比度和非易失特性的光学材料,可在光、电、热等激励作用下进行折射率的连续调节,为非易失光子神经形态计算提供了一种可行的解决方案,成为当前的研究热点。本文首先介绍了光子神经形态计算的基本原理和实现方法,在此基础上讨论了相变材料用于光子神经形态计算的原理。其次,针对不同类型的实现途径,研究了不同相变材料的特点和选型办法,综合分析了当前应用较多的两类相变材料以及各类光突触器件和阵列集成应用。最后对基于相变材料的光子神经形态计算技术的发展进行了展望。
材料 相变材料 神经形态计算 光神经网络 
激光与光电子学进展
2023, 60(21): 2100007
Jingxi Li 1,2,3Tianyi Gan 1,3Bijie Bai 1,2,3Yi Luo 1,2,3[ ... ]Aydogan Ozcan 1,2,3,*
Author Affiliations
Abstract
1 University of California, Electrical and Computer Engineering Department, Los Angeles, California, United States
2 University of California, Bioengineering Department, Los Angeles, California, United States
3 University of California, California NanoSystems Institute, Los Angeles, California, United States
Large-scale linear operations are the cornerstone for performing complex computational tasks. Using optical computing to perform linear transformations offers potential advantages in terms of speed, parallelism, and scalability. Previously, the design of successive spatially engineered diffractive surfaces forming an optical network was demonstrated to perform statistical inference and compute an arbitrary complex-valued linear transformation using narrowband illumination. We report deep-learning-based design of a massively parallel broadband diffractive neural network for all-optically performing a large group of arbitrarily selected, complex-valued linear transformations between an input and output field of view, each with Ni and No pixels, respectively. This broadband diffractive processor is composed of Nw wavelength channels, each of which is uniquely assigned to a distinct target transformation; a large set of arbitrarily selected linear transformations can be individually performed through the same diffractive network at different illumination wavelengths, either simultaneously or sequentially (wavelength scanning). We demonstrate that such a broadband diffractive network, regardless of its material dispersion, can successfully approximate Nw unique complex-valued linear transforms with a negligible error when the number of diffractive neurons (N) in its design is ≥2NwNiNo. We further report that the spectral multiplexing capability can be increased by increasing N; our numerical analyses confirm these conclusions for Nw > 180 and indicate that it can further increase to Nw ∼ 2000, depending on the upper bound of the approximation error. Massively parallel, wavelength-multiplexed diffractive networks will be useful for designing high-throughput intelligent machine-vision systems and hyperspectral processors that can perform statistical inference and analyze objects/scenes with unique spectral properties.
optical neural network deep learning diffractive optical network wavelength multiplexing optical computing 
Advanced Photonics
2023, 5(1): 016003
Author Affiliations
Abstract
1 Pohang University of Science and Technology, Department of Mechanical Engineering, Pohang, Republic of Korea
2 Pohang University of Science and Technology, Department of Chemical Engineering, Pohang, Republic of Korea
3 POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea
The explosion in the amount of information that is being processed is prompting the need for new computing systems beyond existing electronic computers. Photonic computing is emerging as an attractive alternative due to performing calculations at the speed of light, the change for massive parallelism, and also extremely low energy consumption. We review the physical implementation of basic optical calculations, such as differentiation and integration, using metamaterials, and introduce the realization of all-optical artificial neural networks. We start with concise introductions of the mathematical principles behind such optical computation methods and present the advantages, current problems that need to be overcome, and the potential future directions in the field. We expect that our review will be useful for both novice and experienced researchers in the field of all-optical computing platforms using metamaterials.
photonic computing all-optical calculation optical neural network programmable metasurface 
Advanced Photonics
2022, 4(6): 064002
作者单位
摘要
北京邮电大学信息光子学与光通信国家重点实验室,北京 100876
针对电子计算中摩尔定律不断减慢、电子晶体管的规模接近物理极限等造成的计算速度难以进一步提高的问题,提出了一种基于VGG16的衍射光子神经网络(VGG16-DONN)结构。该结构利用光衍射层作为VGG16的光学前端,替换了VGG16中计算耗时占比最大的第一层电卷积层,分别对CelebA数据集和猫狗数据集进行分类(分类精度分别达到86.34%和88.53%),实现了与电子神经网络相当的分类精度。此外,基于此结构,提出了一种面向情境依赖处理(CDP)的VGG16-DONN方法,对CelebA数据集进行分类(平均精度为83.10%),同样达到了与电子神经网络相当的分类精度。不难看出,VGG16-DONN以及其与CDP模块相结合的方式,除了能够借助光计算速度快的优势克服电子神经网络计算慢的问题外,还能够达到与电子神经网络相当的精度,这对于图像处理、医疗、通信等领域都具有重要意义。
光计算 衍射光子神经网络 情境依赖处理 正交权重修改算法 
光学学报
2022, 42(19): 1920001
Author Affiliations
Abstract
1 The Hong Kong University of Science and Technology, Department of Physics, Hong Kong, China
2 University of Guelph, Department of Mathematics and Statistics, Guelph, Ontario, Canada
3 University of Waterloo, Institute for Quantum Computing, Waterloo, Ontario, Canada
4 The University of Texas at Dallas, Department of Physics, Richardson, Texas, United States
Quantum state tomography (QST) is a crucial ingredient for almost all aspects of experimental quantum information processing. As an analog of the “imaging” technique in quantum settings, QST is born to be a data science problem, where machine learning techniques, noticeably neural networks, have been applied extensively. We build and demonstrate an optical neural network (ONN) for photonic polarization qubit QST. The ONN is equipped with built-in optical nonlinear activation functions based on electromagnetically induced transparency. The experimental results show that our ONN can determine the phase parameter of the qubit state accurately. As optics are highly desired for quantum interconnections, our ONN-QST may contribute to the realization of optical quantum networks and inspire the ideas combining artificial optical intelligence with quantum information studies.
optical neural network quantum state tomography quantum optics 
Advanced Photonics
2022, 4(2): 026004
作者单位
摘要
浙江大学电子信息技术研究所,杭州,310027
首先介绍一种洗牌型自由空间光互连多层全互连神经网络模型。该模型的高神经元/权重比可以极大地压缩神经网络的互连权矩阵IWM(interconnect weight matrix)。对于具有N2个神经元的单层二维全互连神经网络的IWM为N2×N2,而洗牌型全互连神经网络的IWM仅为4N2log2N。另外,洗牌型全互连神经网络整齐、简单的结构方便了网络的综合,特别是网络隐单元的综合,并且十分适合于神经网络的光学实现。然后描述了采用数字光技术实现光互连的洗牌型神经网络的系统模型、关键芯片结构以及关键技术。本文提出的模型和方法使实观与人脑神经网络规模(104量级)相当的实用化自适应光电子全互连神经网络成为可能。
光学神经网络 洗牌型 光互连 optical neural network perfect shuffle type optical interconnect 
光电子技术
2000, 20(1): 21
作者单位
摘要
南开大学现代光学研究所, 天津 300071
提出了以信息损失最少为原则的三值(±1)互连权重编码方法,这种编码方法比以前的三值权重编码方法显著地提高了神经网络的性能。由于互连权重只有三值,恰恰弥补了光互连精度不高的缺点,易于光学实现。
神经网络 三值编码 
光学学报
1996, 16(8): 1128
作者单位
摘要
1 南开大学现代光学研究所, 天津 300071
2 南开大学数学系, 天津 300071
利用统计方法,分析了光学系统硬件误差对用Hopfield神经网络作联想记忆时出错率的影响,导出了系统的误差与出错率关系的近似公式,并给出了模拟结果。得到了一定限度的误差对出错率的影响并不显著的结论,特别对探测器阵列动态范围的要求,可以远远小于其探测到的最大值。这对光学神经网络系统的设计及硬件的选取,具有指导意义。
光学神经网络 硬件误差 出错率 
光学学报
1995, 15(12): 1689

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!