作者单位
摘要
东华理工大学江西省核地学数据科学与系统工程技术研究中心, 江西 南昌 330013东华理工大学江西省放射性地学大数据技术工程实验室, 江西 南昌 330013东华理工大学信息工程学院, 江西 南昌 330013
在轻元素自身和实测元素间的特征X射线相互影响之下, 受仪器能量分辨率的制约, 实测X射线荧光光谱会产生严重重叠。 以色谱分离度Rs判定谱峰重叠程度, 针对Rs低于0.3的重叠峰, 提出一种解析EDXRF光谱的新方法, 并对模拟X射线荧光光谱进行了新方法的验证。 首先, 详细介绍基于四阶导的峰锐化法和提出误差小波变换。 通过仿真结果发现: 当Rs=0.27时, 两种方法皆不能单独实现重叠谱峰的解析与识别; 然而, 原始信号在四阶峰锐化法处理后保留了峰位特征的同时, 还出现了Rs明显增大的有利现象。 因此, 只需要通过调节四阶峰锐化法的权重完成对低分离度重叠峰的初步锐化处理, 再对锐化后的信号进行误差小波变换, 结果实现了对模拟重叠峰的分解, 证明了结合后的新方法(锐化误差小波变换)针对极低分离度的重叠谱峰具有强大的分解能力。 对两组重叠谱峰采用叠加的高斯函数进行模拟, 分别是Mn的Kβ能量峰与Fe的Kα能量峰的重叠光谱(Rs=0.19)以及Al的Kα能量峰与其Kβ能量峰的重叠光谱(Rs=0.11)。 用新方法对谱线进行处理, 实现了重叠峰分解, 结果表明针对极低分离度的重叠谱峰该方法具有可行性。 通过锐化误差小波对实测的EDXRF光谱进行解析, 通过对三组数据解析特定三种低分离度重叠峰进行对比实验, 均成功解析与识别了低分离度的重叠谱峰。 结果表明: 针对极低分离度的重叠谱峰, 锐化误差小波变换可以有效分解, 具有突破性, 实用性和创新性。
X射线荧光光谱 低分离度重叠峰 峰锐化 锐化误差小波变换 重峰分解 X-Ray fluorescence spectrum Low-resolution overlapping peak Peak sharpening Sharpening error wavelet transform Overlapping peak decomposition 
光谱学与光谱分析
2023, 43(6): 1719
作者单位
摘要
核技术应用教育部工程研究中心(东华理工大学), 江西 南昌 330013
在放射性能谱测量中, 由于探测器分辨率较低、 待测样品中原子能级相近, 往往会出现全能峰的重叠现象, 对放射性核素的定性或定量检测带来较大的困难; 常规的分离算法一般需要复杂的谱变换或大量的标准谱样本, 不适用于现场测量中重叠峰的实时分解。 因此, 提出一种基于高斯锐化法的能谱重叠峰解析方法(GSM), 结合峰锐化法的分辨率增强能力和褶积滑动变换法的平滑特性, 可快速地识别、 定位和解析γ能谱中的重叠峰。 该方法首先对高斯函数进行锐化并做归一化处理, 并以此作为变换算子, 选择合适的高斯参数及窗宽度, 通过对原始γ能谱数据进行褶积滑动变换, 达到滤波和提高重叠峰分离度的目的; 然后求解GSM成形处理后的谱线近似函数作为目标函数, 并选取峰位中心附近若干点作为初始参数, 最后以非线性拟合的方法进行重叠峰特征峰参数的解析。 实验中, 首先验证了该方法变换前后峰位、 峰面积特征值的不变性, 其次分别对重叠峰能谱段以及MCNP模拟的131I, 137Cs, 214Bi, 206Bi和26Al混合放射源γ能谱进行方法验证。 实验结果表明, 该方法对于分离度大于0.375、 信噪比大于40 dB的重叠峰具有较好分解效果, 分解前后的峰位和峰面积的相对误差分别在1%和4.5%以内; 对于γ能谱进行全谱解析后, 重叠峰的峰位分离相对误差在1%以内, 单峰的分离相对误差约为0.1%以内, 且当变换算子的半宽度接近探测器能量分辨率时, 重叠峰的分解结果更准确。 该方法具备较好的噪声抑制性能, 在全谱解析中无需进行能谱光滑及本底扣除等谱线预处理操作, 且计算资源耗费少, 分解精确度较高, 便于能谱测量系统的嵌入式实时解谱应用, 对放射性测量中能谱的现场快速解析具有实用性。
重叠峰分解 峰锐化 滑动褶积 非线性拟合 Peak sharpening Sliding convolution Nonlinear fitting Overlapping peak decomposition 
光谱学与光谱分析
2021, 41(10): 3245
周世融 1,2,*何剑锋 1,2,3任印权 1,2汪雪元 1,3叶志翔 1,2
作者单位
摘要
1 东华理工大学江西省放射性地学大数据技术工程实验室, 江西 南昌 330013
2 东华理工大学信息工程学院, 江西 南昌 330013
3 东华理工大学放射性地质与勘探技术国防重点学科实验室, 江西 南昌 330013
由于轻元素自身特征X射线以及测量元素间特征X射线的相互干扰, 受仪器能量分辨率的影响, 实测X射线荧光光谱会产生严重重叠。 以色谱分离度Rs作为计算谱峰重叠程度的指标, Rs低于0.5的重叠峰作为研究对象, 提出一种峰锐化法结合双树复小波变换分解低分离度重叠峰的新方法, 并对模拟X射线荧光光谱和实测X射线荧光光谱进行了新方法的验证。 首先, 在详细介绍峰锐化法和双树复小波变换分解重叠峰原理的基础上, 通过仿真结果发现: 当Rs=0.38时, 两种方法皆不能单独实现重叠峰的分解; 然而, 峰锐化法处理后的信号不仅保留了原始信号的峰位特征, 还出现了分离度明显变大的现象。 因此, 可以通过调节峰锐化法的权值实现对低分离度重叠峰的初步锐化, 再对锐化后的信号做双树复小波变换, 结果实现了对模拟重叠峰的分解, 验证了新方法分解低分离度重叠峰的优越性。 其中, 双树复小波变换的分解层数为2~6层, 第一层选择near_sym_b滤波器, 第一层以上选择qshift_d滤波器, 且当细节系数放大倍数为1~10时, 重叠峰的分解结果更准确。 然后, 模拟了K元素Kα能量峰与其Kβ能量峰的重叠光谱(Rs=0.44)以及Fe元素Kβ能量峰与Co元素Kα能量峰的重叠光谱(Rs=0.34), 用新方法对谱线进行处理, 结果实现了重叠峰分解, 且分解后峰位和峰面积的相对误差分别在1%和6%以内, 验证了该方法分解光谱中低分离度重叠峰的可行性。 最后, 用新方法对实测的Ca元素X射线荧光光谱进行处理, 最终也实现了重叠峰分解, 且分解后的峰位相对误差分别为0.8%和0.7%。 结果证明: 峰锐化法结合双树复小波变换能够有效分解低分离度重叠峰, 且在解决X射线荧光光谱中谱峰严重重叠的问题上具有实用性。
X射线荧光光谱 低分离度重叠峰 峰锐化 双树复小波变换 重叠峰分解 X-ray fluorescence spectrum Low-resolution overlapping peak Peak sharpening The double-tree complex wavelet transform Overlapping peak decomposition 
光谱学与光谱分析
2020, 40(4): 1221
作者单位
摘要
1 江南大学轻工过程先进控制教育部重点实验室, 江苏 无锡 214122
2 北京卓立汉光仪器有限公司, 北京 101102
提出了一种基于拉曼光谱的混合物组分识别新方法。对混合物的拉曼光谱进行背景校正和去噪处理,利用Voigt函数对拉曼谱峰进行拟合,获取其谱峰的拉曼位移、半峰全宽及强度作为混合物特征参数向量,通过与数据库纯净物特征向量进行相关性分析,实现混合物组分的有效识别。构建了由18种纯净物拉曼光谱数据构成的标准组分数据库,并对6种混合物进行了组分识别实验。实验结果表明,所提方法的识别准确率达到100%。
光谱学 拉曼光谱 组分识别 相关性分析 重叠峰分解 特征向量 
激光与光电子学进展
2019, 56(8): 083004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!