Author Affiliations
Abstract
1 State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
2 Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663, Germany
3 College of Physics Science & Technology, Hebei University, Baoding 071002, China
4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
The two-dimensional electron gas (2DEG) generated at the LaAlO3/SrTiO3 interface has been in the focus of oxides research since its first discovery. Although oxygen vacancies play an important role in the generation of the insulator-to-metal transition of the SrTiO3 bare surface, their contribution at the LaAlO3/SrTiO3 interface remains unclear. In this work, we investigated a LaAlO3/SrTiO3 heterostructure with regional distribution of defect-based localized polar sites at the interface. Using static and time-resolved threshold photoemission electron microscopy, we prove that oxygen vacancies are induced near those polar sites, resulting in the increase of carrier density of the 2DEG states. In addition, oxygen-related surface states were uncovered, which we attributed to the release of lattice oxygen during the formation of oxygen vacancies. Such effects are mainly found spatially located around the defect sites at the buried interface, while other regions remain unaffected. Our results confirm that the itinerant electrons induced by oxygen vacancies can coexist with the charge transfer mechanism in the LaAlO3/SrTiO3 heterostructure, together leading to the formation of the metallic interface. These observations provide fundamental insights into the nature of LaAlO3/SrTiO3 interface based 2DEG and unique perspectives for potential applications.
two-dimensional electron gas photoemission electron microscopy strontium titanate defect states 
Opto-Electronic Science
2022, 1(7): 210011
作者单位
摘要
北京大学 物理学院 现代光学研究所,北京100871
新型光电材料、磁性材料、低维量子材料等是目前凝聚态物理的研究前沿,其在微纳尺度的近场光学动力学具有丰富的物理内涵和广阔的应用前景。飞秒激光的超高时间分辨与光电子显微镜的超高空间分辨结合为一种超高时空分辨测量技术,为材料物理、表面物理等研究注入了新的活力,提供了强有力的平台。本文介绍了超高时空分辨光电子显微镜,讨论了其在金属表面等离激元动力学、低维材料等新型半导体材料动力学、材料异质结界面动力学等方面的应用和研究进展,最后展望了其在飞秒-纳米尺度表面和界面物理研究的应用前景。
超快光学 光电子显微镜 时间分辨 动力学 表面等离激元 低维材料 Ultrafast optics Photoemission electron microscopy Time-resolved Carrier dynamics Surface plasmons Low-dimensional materials 
光子学报
2021, 50(8): 0850201
作者单位
摘要
1 北海道大学电子科学研究所, 日本 札幌 001-0020
3 北京大学物理学院, 北京 100871
对超快光电子显微技术的基本原理和主要应用进行了简单介绍。着重介绍了超快光电子显微镜在纳米光子学,特别是在表面等离激元光子学领域中的研究进展,主要包括近场成像、近场光谱以及时间分辨的动力学过程。这些研究有助于更直观深刻地理解表面等离激元的基本性质、不同模式之间的相互作用,以及更好地设计及拓展表面等离激元的应用。最后,对该技术的应用前景进行了展望。
超快光学 近场 光电子显微技术 表面等离激元 飞秒激光 时间分辨测量 
中国激光
2019, 46(5): 0508001
Author Affiliations
Abstract
1 Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
2 College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
We studied the near-field properties of localized surface plasmon resonances in finite linear gold nanochains using photoemission electron microscopy (PEEM). The localization of the electromagnetic field in the near-field region was mapped at high spatial resolution. By tuning the excitation laser wavelength, we can obtain the near-field spectra, from which the energy splitting between longitudinal (L) and transverse (T) plasmon modes can be revealed. In particular, the L-mode red shifts and the T-mode blue shifts with increasing chain length. The red shift of the L-mode is highly dependent on the gap distance. In contrast, the T-mode almost remains constant within the range of gap distance we investigated. This energy splitting between the L-mode and the T-mode of metallic chains is in agreement with previous far-field measurements, where it was explained by dipole-dipole near-field coupling. Here, we provide direct proof of this near-field plasmon coupling in nanochains via the above-described near-field measurements using PEEM. In addition, we explore the energy transport along the gold nanochains under excitation at oblique illumination via PEEM measurements together with numerical simulations.
surface plasmon resonance metallic nanochains near-field imaging photoemission electron microscopy 
Opto-Electronic Advances
2019, 2(4): 180030

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!