Author Affiliations
Abstract
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
We demonstrate the photon-number resolution (PNR) capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode (APD) that is equipped with a simple, low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response. Through discriminating the avalanche current amplitude, we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%. The PNR capability is limited by the avalanche current saturation, and can be increased to five photons at a lower detection efficiency of 34%. The PNR capability, combined with high efficiency and low noise, will find applications in quantum information processing technique based on photonic qubits.
single photon avalanche diode (APD) photon number resolution (PNR) detection efficiency 
Journal of Semiconductors
2024, 45(3): 032702
Ling-Dong Kong 1,2,*†Tian-Zhu Zhang 1,2Xiao-Yu Liu 1,2Hao Li 1,2[ ... ]Li-Xing You 1,2,3,*
Author Affiliations
Abstract
1 Chinese Academy of Sciences (CAS), Shanghai Institute of Microsystem and Information Technology, National Key Laboratory of Materials for Integrated Circuits, Shanghai, China
2 CAS Center for Excellence in Superconducting Electronics, Shanghai, China
3 University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
Efficient and precise photon-number-resolving detectors are essential for optical quantum information science. Despite this, very few detectors have been able to distinguish photon numbers with both high fidelity and a large dynamic range, all while maintaining high speed and high timing precision. Superconducting nanostrip-based detectors excel at counting single photons efficiently and rapidly, but face challenges in balancing dynamic range and fidelity. Here, we have pioneered the demonstration of 10 true photon-number resolution using a superconducting microstrip detector, with readout fidelity reaching an impressive 98% and 90% for 4-photon and 6-photon events, respectively. Furthermore, our proposed dual-channel timing setup drastically reduces the amount of data acquisition by 3 orders of magnitude, allowing for real-time photon-number readout. We then demonstrate the utility of our scheme by implementing a quantum random-number generator based on sampling the parity of a coherent state, which guarantees inherent unbiasedness, robustness against experimental imperfections and environmental noise, as well as invulnerability to eavesdropping. Our solution boasts high fidelity, a large dynamic range, and real-time characterization for photon-number resolution and simplicity with respect to device structure, fabrication, and readout, which may provide a promising avenue towards optical quantum information science.
superconducting microstrips single-photon detector photon-number resolution quantum random number 
Advanced Photonics
2024, 6(1): 016004
作者单位
摘要
上海理工大学 光电信息与计算机工程学院, 上海 200093
通过正弦门低通滤波方案,实现了基于InGaAs/InP 雪崩光电二极管(APD)的高速单光子探测。同时,配合多通道集成技术,完成了四合一的GHz单光子探测阵列。最后,通过空间分束的方法,实现了GHz 4光子的高速光子数可分辨探测。通过和理论值比较,发现光子数分辨的误差最大仅为2.285%,达到了有效的分辨。研究多通道光子数可分辨技术,为激光测距、随机数生成器以及量子保密通信等诸多领域的快速发展提供了保障。
正弦门 低通滤波 单光子探测阵列 多通道光子数可分辨 sinusoidal gating low pass filtering single photon detection array multichannel photon number resolution 
光学仪器
2018, 40(5): 8

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!