作者单位
摘要
南京邮电大学电子与光学工程微电子学院,江苏 南京 210023
提出了一种新型传感器结构,基于正十六边形光子晶体光纤(PCF)的D型表面等离子体共振(SPR)传感器,实现了折射率(RI)和温度的同时测量,同时实现了较大范围内折射率和温度的动态检测。可以同时实现折射率为1.230~1.355、温度为5~85 ℃的检测。结果显示,折射率在1.330~1.355范围内时,灵敏度为1645.7 nm/RIU;在整个可测范围内最大灵敏度为1497.6 nm/RIU。温度范围在20~60 ℃时,灵敏度最高可达-2.68 nm/℃;在整个可测范围内灵敏度最高可达-3 nm/℃。此结构的优势在于可在较大范围内独立检测RI和温度的同时又能保证相对较高的灵敏度。
光纤光学 光子晶体光纤传感器 表面等离子体共振 有限元法 共振波长 折射率 温度 
激光与光电子学进展
2022, 59(7): 0706001
作者单位
摘要
1 南昌工学院 基础教学部, 南昌 330108
2 南昌航空大学 江西省光电检测技术工程实验室, 南昌 330063
为了实现高灵敏的表面等离子体共振(SPR)折射率传感, 提出一种基于大纤芯的单芯光子晶体光纤SPR传感结构, 采用全矢量有限元方法对其传感特性进行了数值仿真和分析。结果表明, 该结构具有比较宽的折射率传感范围(1.36~1.55), 同时具有较高的传感灵敏度, 平均传感灵敏度达12139nm/RIU; 在折射率1.36~1.42区域, 线性传感灵敏度为5646.4nm/RIU, 线性度为0.9317; 而在折射率1.42~1.57区域, 传感灵敏度达到15326.8nm/RIU, 线性度为0.98738, 传感特性出现明显的线性分段情况。该研究结果为实现高灵敏的光子晶体光纤SPR传感器提供了重要的理论依据。
光纤光学 光子晶体光纤传感 有限元 表面等离子体共振 fiber optics photonic crystal fiber sensor finite element surface plasmon resonance 
激光技术
2018, 42(5): 713
作者单位
摘要
南京邮电大学光电工程学院, 江苏 南京 210023
设计了一种新型光子晶体光纤(PCF)磁场和温度传感结构。在光子晶体光纤包层的一个空气孔中填充磁流体,形成定向耦合结构,检测结构的磁场和温度变化。利用全矢量有限元法(FEM)对该传感器特性进行了仿真研究。结果表明,该传感结构可以实现磁场范围为100~250 Oe(1 Oe=79.58 A/m),温度范围为10~60 ℃的检测,在该范围内磁场和温度的灵敏度最高可达1.10 nm/Oe和-3.86 nm/℃。
光纤光学 光子晶体光纤传感器 定向耦合 磁场 温度 
光学学报
2016, 36(7): 0706004
祖鹏 1,2,*向望华 1,2金永兴 3
作者单位
摘要
1 天津大学 精密仪器与光电子工程学院,天津 300072
2 光电信息技术科学教育部重点实验室,天津 300072
3 School of Chemical and Biomedical Engineering,Nanyang Technological University,Singapore,637598
研究了低双折射光子晶体光纤中由光纤扭曲造成的圆双折射效应,并应用Sagnac干涉仪结构设计了扭曲传感器.在Sagnac环中的光子晶体光纤上施加机械压力引入初始线双折射并产生正弦干涉光谱,再扭曲光纤产生圆双折射使干涉光谱随扭曲角度移动.光谱峰值波长随扭曲角度变化符合Sinc函数关系,理论分析与实验相符.传感器灵敏度为1.00 nm/°,分比率为0.01°,并具有超低的温度系数-0.5 pm/℃.
光子晶体光纤传感器 扭曲传感器 低双折射光纤 Sagnac干涉仪 双折射 Photonic crystal fiber sensor Twist sensor Low birefringence fiber Sagnac interferometer Birefringence 
光子学报
2011, 40(9): 1433
作者单位
摘要
重庆三峡学院物理与电子工程学院光电信息技术实验室, 重庆 404000
光子晶体光纤(PCF)压力传感器可广泛用于各种环境压力监测中。采用全矢量有限元方法对双芯光子晶体光纤的双折射特性进行了分析, 采用二阶微分方程理论模型模拟了光子晶体光纤高压力传感器对外界压力的响应, 并应用这个模型讨论了外界压力作用对敏感元件有效折射率和双折射的影响, 提出了一种高压力光子晶体光纤传感器方案。计算结果表明高压力致双空气孔芯光子晶体光纤的双折射值可达很高, 光子晶体光纤传感器系统更为简洁紧凑。
光纤光学 光子晶体光纤 双折射 光子晶体光纤传感器 
中国激光
2009, 36(8): 2057

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!