Chen Hu 1,2,3Songlin Wan 1,2,*Guochang Jiang 1,2Haojin Gu 1,2[ ... ]Jianda Shao 1,2,3,4,5,*
Author Affiliations
Abstract
1 Precision Optical Manufacturing and Testing Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai, China
2 Key Laboratory for High Power Laser Material of Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
5 China-Russian Belt and Road Joint Laboratory on Laser Science, Shanghai, China
The large-aperture pulse compression grating (PCG) is a critical component in generating an ultra-high-intensity, ultra-short-pulse laser; however, the size of the PCG manufactured by transmission holographic exposure is limited to large-scale high-quality materials. The reflective method is a potential way for solving the size limitation, but there is still no successful precedent due to the lack of scientific specifications and advanced processing technology of exposure mirrors. In this paper, an analytical model is developed to clarify the specifications of components, and advanced processing technology is adopted to control the spatial frequency errors. Hereafter, we have successfully fabricated a multilayer dielectric grating of 200 mm × 150 mm by using an off-axis reflective exposure system with Φ300 mm. This demonstration proves that PCGs can be manufactured by using the reflection holographic exposure method and shows the potential for manufacturing the meter-level gratings used in 100 petawatt class high-power lasers.
high-power laser off-axis reflective exposure system pulse compression grating spatial frequency errors specifications 
High Power Laser Science and Engineering
2024, 12(1): 010000e1
作者单位
摘要
苏州大学 物理与光电·能源学部与苏州纳米科技协同创新中心江苏省先进光学制造技术重点实验室 教育部现代光学技术重点实验室, 江苏 苏州 215006
考虑激光脉冲啁啾放大与压缩技术要求脉冲压缩光栅有较低的像差, 设计并制作了一个小形变变形镜来补偿大口径光栅基板加工残余的亚微米级静态像差对光栅波像差的影响。 该变形镜有效口径为80 mm、厚度为5 mm, 包含19个分立式压电促动器。采用干涉仪测量得到各个促动器的响应函数, 构建了变形镜的刚度矩阵; 采用最小二乘法求解出获得目标面形时各个促动器上所需施加的控制电压; 通过整体优化和局部优化的结合, 使变形镜的目标面形得到了有效控制。应用该变形镜构建了主动式全息光学记录系统, 并选用具有较大像差的基板开展了光栅像差补偿实验。实验显示, 对残余像差为~0.93λ的基板, 采用变形镜后制作出了残余波面PV可达0.14λ(@ 633 nm)的脉冲压缩光栅, 验证了小形变变形镜在光栅基底像差补偿上的有效性。
变形镜 全息光栅 脉冲压缩光栅 压电促动器 响应函数 像差补偿 Deformable mirror(DM) holographic grating pulse compression grating piezoelectric actuator response function aberration compensation 
光学 精密工程
2016, 24(12): 2993
作者单位
摘要
1 苏州大学 物理与光电·能源学部与苏州纳米科技协同创新中心 苏州大学 江苏省先进光学制造技术重点实验室和教育部现代光学技术重点实验室, 江苏 苏州 215006
2 中佛罗里达大学 光学-激光研究与教育中心, 佛罗里达 32816
提出了一种用于飞秒钛宝石激光器的复合型透射式脉冲压缩光栅。该光栅由1 250 line/mm和3 300 line/mm两种光栅集成在一个熔石英基底上制成, 其工作中心波长为800 nm, 工作波段为700~900 nm。1 250 line/mm光栅用于脉冲压缩; 3 300 line/mm光栅的运用则有益于减少透射光栅的反射损失, 同时由于采用高频光栅结构代替了传统增透膜, 可有效减少光栅基底的波前形变。该复合光栅完全由熔石英材料构成, 故具有很高的损伤阈值。利用严格耦合波理论对该复合型透射光栅的微结构进行了优化设计, 结果表明: 1 250 line/mm光栅在中心波长800 nm处的-1级衍射效率可达98%; 3 300 line/mm增透光栅的透过率在700~900 nm波段可以达到99.7%以上。最后, 应用全息记录技术和离子刻蚀技术实际制备了Φ65 mm×1 mm的复合式透射脉冲压缩光栅, 实测衍射效率与理论设计相符。
脉冲压缩光栅 熔石英透射光栅 衍射效率 激光损伤阈值 pulse compression grating fused silica transmission grating diffraction efficiency laser damage threshold 
光学 精密工程
2016, 24(12): 2983

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!