Author Affiliations
Abstract
1 Intense Laser Irradiation Laboratory, INO-CNR, 56124 Pisa, Italy
2 Centre de Physique Théorique CPHT, CNRS, IP Paris, Ecole Polytechnique, 91128 Palaiseau, France
3 York Plasma Institute, Department of Physics, University of York, YorkYO10 5DD, UK
4 Dipartimento SBAI, Università di Roma ‘La Sapienza’, 00161 Roma, Italy
5 Université de Bordeaux, CNRS, CEA, CELIA, 33405Talence, France
6 STFC Rutherford Appleton Lab, Central Laser Facility, DidcotSN2 1SZ, UK
7 Key Laboratory for Laser Plasmas (MOE), Shanghai Jiao Tong University, Shanghai200240, China
8 CEA, DAM, DIF, 91297Arpajon, France
9 Université Paris-Saclay, CEA, LMCE, 91680Bruyères-le-Châtel, France
10 Institute of Physics, ELI Beamlines, Institute of Plasma Physics, Czech Academy of Sciences, 18221Prague, Czech Republic
11 Helmholtz-Zentrum Dresden-Rossendorf, 01328Dresden, Germany
We report results and modelling of an experiment performed at the Target Area West Vulcan laser facility, aimed at investigating laser–plasma interaction in conditions that are of interest for the shock ignition scheme in inertial confinement fusion (ICF), that is, laser intensity higher than ${10}^{16}$ $\mathrm{W}/{\mathrm{cm}}^2$ impinging on a hot ($T>1$ keV), inhomogeneous and long scalelength pre-formed plasma. Measurements show a significant stimulated Raman scattering (SRS) backscattering ($\sim 4\%{-}20\%$ of laser energy) driven at low plasma densities and no signatures of two-plasmon decay (TPD)/SRS driven at the quarter critical density region. Results are satisfactorily reproduced by an analytical model accounting for the convective SRS growth in independent laser speckles, in conditions where the reflectivity is dominated by the contribution from the most intense speckles, where SRS becomes saturated. Analytical and kinetic simulations well reproduce the onset of SRS at low plasma densities in a regime strongly affected by non-linear Landau damping and by filamentation of the most intense laser speckles. The absence of TPD/SRS at higher densities is explained by pump depletion and plasma smoothing driven by filamentation. The prevalence of laser coupling in the low-density profile justifies the low temperature measured for hot electrons ($7\!{-}\!12$ keV), which is well reproduced by numerical simulations.
plasma simulations shock ignition stimulated Raman scattering inertial confinement fusion laser-plasma interaction 
High Power Laser Science and Engineering
2021, 9(4): 04000e60
Author Affiliations
Abstract
1 National Institute of Optics, CNR, Pisa and Florence, Italy
2 York Plasma Physics Institute, University of York, Heslington, York, UK
3 Université de Bordeaux, CNRS, CEA, CELIA, Talence, France
4 Donostia International Physics Center (DIPC), Donostia/San Sebastian, Basque Country, Spain
5 Dipartimento SBAI, Università di Roma La Sapienza, Roma, Italy
6 National Research Nuclear University MEPhI, Moscow, Russia
7 CEA, DAM, DIF, Arpajon, France
8 Department of Radiation and Chemical Physics, Institute of Physics of the CAS, Prague, Czech Republic
9 Laser Plasma Department, Institute of Plasma Physics of the CAS, Prague, Czech Republic
10 Joint Institute for High Temperature RAS, Moscow, Russia
11 ELI-Beamlines, Institute of Physics of the CAS, Prague, Czech Republic
12 FNSPE, Czech Technical University in Prague, Prague, Czech Republic
13 Universidad de Salamanca, Ctr Laseres Pulsados, Salamanca, Spain
14 Centro de Laseres Pulsados (CLPU), Villamayor, Salamanca, Spain
Laser–plasma interaction (LPI) at intensities $10^{15}{-}10^{16}~\text{W}\cdot \text{cm}^{-2}$ is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity ${\sim}1.2\times 10^{16}~\text{W}\cdot \text{cm}^{-2}$ with a ${\sim}100~\unicode[STIX]{x03BC}\text{m}$ scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (${\sim}4~\text{keV}$) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.
plasma simulations shock ignition stimulated Raman scattering two-plasmon decay 
High Power Laser Science and Engineering
2019, 7(3): 03000e51
作者单位
摘要
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
冲击点火是一种新型点火方式, 介绍了国内进行的冲击点火分解实验。实验结果表明: 相比于方波脉冲, 在冲击峰整形脉冲作用下激光与等离子体相互作用明显增强, 背向散射光的份额增加, 散射光谱来自于不同密度的等离子体区域。实验中也观察到了方波条件下冲击波在CH样品中的传播过程, 与模拟计算结果较为符合。
冲击点火 背向散射光 冲击波 光谱 shock ignition back scattering light shock wave spectrum 
强激光与粒子束
2015, 27(5): 052002
Author Affiliations
Abstract
1 Institute of Physics of the ASCR, ELI-Beamlines, 18221 Prague, Czech Republic
2 LULI, Sorbonne Universites-Universite Pierre et Marie Curie - Ecole Polytechnique - CNRS - CEA, 75005 Paris, France
The role of the coronal electron plasma temperature for shock-ignition conditions is analysed with respect to the dominant parametric processes: stimulated Brillouin scattering, stimulated Raman scattering, two-plasmon decay (TPD), Langmuir decay instability (LDI) and cavitation. TPD instability and cavitation are sensitive to the electron temperature. At the same time the reflectivity and high-energy electron production are strongly affected. For low plasma temperatures the LDI plays a dominant role in the TPD saturation. An understanding of laser–plasma interaction in the context of shock ignition is an important issue due to the localization of energy deposition by collective effects and hot electron production. This in turn can have consequences for the compression phase and the resulting gain factor of the implosion phase.
inertial confinement fusion shock ignition laser–plasma interaction parametric instabilities 
High Power Laser Science and Engineering
2015, 3(1): 010000e6
作者单位
摘要
1 中国工程物理研究院 研究生部, 北京 100088
2 北京应用物理与计算数学研究所, 北京 100094
3 上海激光等离子体研究所, 上海 201800
通过对冲击波点火内爆过程的数值模拟分析点火热斑压缩及形成机制。分析了传统中心点火的内爆过程, 热斑主要经历冲击波压缩和惯性压缩过程, 点火主要通过惯性压缩来实现。并仔细分析了冲击波点火的内爆压缩过程, 从内爆角度来看冲击波点火并不是压缩和点火分开的两步过程, 点火冲击波实际参与压缩过程, 点火冲击波对热斑的直接影响很有限, 热斑仍然主要通过壳层的惯性压缩实现点火。利用惯性压缩的定标关系及冲击波碰撞对壳层影响规律分析了热斑增压的物理机制, 冲击波点火是通过点火冲击波与回冲击波的碰撞来提高壳层的密度, 从而实现热斑压力的提升。
激光惯性约束聚变 冲击波点火 内爆 热斑形成 inertial confinement fusion shock ignition implosion forming of hot spot 
强激光与粒子束
2015, 27(3): 032005
作者单位
摘要
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
直接相位调制可产生带宽可调的线性啁啾脉冲,可作为种子源用于啁啾脉冲放大系统中。对线性啁啾脉冲的产生过程以及啁啾脉冲在光纤中的传输放大过程进行了数值模拟与实验研究,实验获得了底宽为500 ps,带宽为0.69 nm 的线性啁啾脉冲。在此基础上提出一种全新的产生冲击点火种子脉冲的方式,即对光脉冲的局部进行调制与压缩以获得高对比度的种子脉冲,并对其进行了实验验证。实验中将一方波脉冲经调制压缩为对比度为2∶1 的阶梯脉冲,验证了该方法产生冲击点火种子脉冲的可行性。该方案为未来多种脉冲类型输出的惯性约束聚变(ICF)驱动器光纤前端系统的研制打下了研究基础。
光纤光学 线性啁啾 直接相位调制 冲击点火脉冲 
中国激光
2015, 42(3): 0302002
Author Affiliations
Abstract
1 Centre de Mathematiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, Cachan Cedex, France
2 CEA, DIF, Arpajon Cedex, France
3 AWE plc, Aldermaston, Reading, Berkshire, United Kingdom
4 ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid, Spain
5 ELI-Beamlines, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion capsule in the context of the shock ignition scheme providing the energy gain and an estimation of the increase of the peak power due to the reduction of the photon penetration expected during the high-intensity spike pulse. In the second part, we considered a Laser MegaJoule configuration consisting of 176 laser beams that have been grouped providing two different irradiation schemes. In this configuration the maximum available energy and power are 1.3 MJ and 440 TW. Optimization of the laser–capsule parameters that minimize the irradiation non-uniformity during the first few ns of the foot pulse has been performed. The calculations take into account the specific elliptical laser intensity profile provided at the Laser MegaJoule and the expected beam uncertainties. A significant improvement of the illumination uniformity provided by the polar direct drive technique has been demonstrated. Three-dimensional hydrodynamic calculations have been performed in order to analyse the magnitude of the azimuthal component of the irradiation that is neglected in twodimensional hydrodynamic simulations.
inertial confinement fusion shock ignition laser system 
High Power Laser Science and Engineering
2014, 2(2): 020000e8

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!