Author Affiliations
Abstract
College of Precision Instrument and Optoelectronics Engineering, Tianjin University; Key Laboratory of Optoelectronic Information Technology, Ministry of Education, Tianjin 300072, China
The spiderlike structures in the photoelectron momentum distributions of ionized electrons from the hydrogen atom are numerically simulated by using a semiclassical rescattering model (SRM) and solving the time-dependent Schr?dinger equation (TDSE), focusing on the role of the phase of the scattering amplitude. With the SRM, we find that the spiderlike legs shift to positions with smaller transverse momentum values while increasing the phase. The spiderlike patterns obtained by SRM and TDSE are in good agreement upon considering this phase. In addition, the time differences in electron ionization and rescattering calculated by SRM and the saddle-point equations are either in agreement or show very similar laws of variation, which further corroborates the significance of the phase of the scattering amplitude.
photoelectron holography semiclassical rescattering model spiderlike structure 
Chinese Optics Letters
2021, 19(7): 073201

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!