作者单位
摘要
西北核技术研究所 先进高功率微波技术重点实验室,西安 710024
分析了三传输线型脉冲压缩装置的原理,从提高功率增益和小型化角度,在脉冲压缩装置中设计了一种3起端并联绕线的内置型高阻螺旋线结构。建立电路仿真模型和三维结构电磁场仿真模型,分析了高阻螺旋线特征参数对功率增益的影响。根据优化后的结果研制出紧凑型高功率亚纳秒脉冲压缩装置,经测试,前级输入脉冲宽度8 ns,功率1 GW时,输出脉冲宽度1.5 ns,功率3.7 GW,功率增益3.7。经过30万次运行考核,装置内部无滑闪和击穿现象,验证了设计可靠性。
亚纳秒脉冲 脉冲压缩 螺旋线 功率增益 subnanosecond pulse pulse compression spiral power gain 
强激光与粒子束
2023, 35(2): 025006
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
介绍了一种采用三传输线型形成线压缩技术直接产生高功率亚纳秒脉冲的方法。给出了脉冲压缩的理论分析,设计了相应的脉冲压缩装置,并采用Pspice软件建立了电路模型,计算结果显示脉冲压缩装置的功率增益可达到2.25倍,验证了理论分析。基于现有的CKP1000超宽谱脉冲源,建立了完整的脉冲压缩实验系统并展开实验研究,结果表明:脉冲压缩装置在入射脉冲电压220 kV、脉宽5 ns的情况下,可产生峰值电压295 kV,半高宽约800 ps,前沿400 ps的亚纳秒脉冲,脉冲压缩装置的功率增益约为1.8倍,实验结果与理论值基本相符。
亚纳秒脉冲 脉冲压缩 功率增益 subnanosecond pulse pulse compression power gain 
强激光与粒子束
2017, 29(11): 115002
作者单位
摘要
西北核技术研究所, 西安 710024
在超宽谱脉冲产生辐射系统或脉冲功率源中, 常用高压气体开关来产生快脉冲沿的高功率电磁脉冲。为了研究高压氢气亚纳秒开关的击穿特性, 通过实验研究了氢气开关在高气压和短间隙距离条件下的击穿特性。开关输入脉冲的峰值幅度约220 kV, 脉宽3~4 ns。氢气气压4~13 MPa, 间隙距离0.4~1.2 mm。结果表明:开关击穿电压随气压升高而增加, 且开关气压达到11 MPa后击穿电压随气压增加的趋势变缓;开关击穿电压随间距增加而增加, 平均击穿场强随间距增加而减小, 氢气开关平均击穿场强分布在3~7 MV/cm之间;开关导通时间随气压增加略有减小, 随间隙距离增加有小幅增加。
超宽谱 高压氢气 亚纳秒开关 击穿特性 ultra-wide spectrum high pressure hydrogen subnanosecond switch breakdown characteristic 
强激光与粒子束
2011, 23(5): 1417
作者单位
摘要
中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
运用超辐射机理,通过粒子模拟设计了X波段超辐射相对论返波管,并在小型Tesla脉冲源平台上开展了实验研究。通过空间功率积分和直接对辐射微波时域波形的分析得到实验结果:在束压350 kV、束流4.8 kA、脉宽3.1 ns、引导磁场2.2 T条件下,产生的微波辐射功率1.4 GW,中心频率9.36 GHz,脉宽500~700 ps,辐射模式为TE11,能在重复频率100 Hz下稳定运行。功率转换效率超过80%。实验结果与粒子模拟结果比较吻合,成功实现了在短脉冲条件下产生重复频率、亚纳秒脉宽、GW级微波辐射。
超辐射 相对论返波管 亚纳秒 高功率微波 superradiance relativistic backward wave oscillator subnanosecond high power microwave 
强激光与粒子束
2010, 22(4): 841
作者单位
摘要
中国工程物理研究院 流体物理研究所,四川 绵阳 621900
提出并设计了一种Marx发生器线路,将电路模拟和实验验证结果与传统的Marx线路进行了比较,结果表明,所设计的线路通过保证Marx后级开关上的过电压幅值,来保证开关可靠击穿并减小开关自击穿所需时间,从而减小Marx发生器的抖动和增大工作范围。在此线路基础上,设计了一种用于直线感应加速器脉冲功率系统的Marx发生器,该发生器采用正负双极性直流充电,使用低抖动的场畸变火花隙开关作为脉冲形成开关,最大储能16.87 kJ,最高输出电压450 kV,在一定工作状态下可以达到亚纳秒级的时间抖动。
Marx发生器 火花隙开关 亚纳秒抖动 直线感应加速器 脉冲功率系统 Marx generator spark gap switch subnanosecond jitter linear induction accelerator pulsed power system 
强激光与粒子束
2010, 22(4): 743
作者单位
摘要
中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
设计了3种结构的同轴Peaking-Chopping组合型亚纳秒气体开关,以半导体开路开关脉冲源为实验平台,分别对它们的击穿特性进行了实验研究。结果表明:亚纳秒气体开关采用环形组合电极Ⅱ时,可以在1~500 Hz稳定工作,输出前沿400 ps、后沿320 ps、脉冲宽度460 ps和电压129.2 kV的脉冲。开关输出脉冲的前后沿、脉冲宽度和电压幅度与开关间隙、气压和重复频率等因素有关,亚纳秒气体开关在小间隙(1~2 mm)、高气压(约10 MPa)时具有良好的重频特性。在开关气压和输入脉冲幅度不变时,输入脉冲上升沿越快,开关的击穿时延越小,击穿电压越高。
气体开关 亚纳秒脉冲 锐化 击穿时延 击穿电压 gas switch subnanosecond pulse peaking-chopping gap breakdown delay breakdown voltage 
强激光与粒子束
2009, 21(4): 625
作者单位
摘要
1 西北核技术研究所,陕西,西安,710024
2 清华大学电机系,北京,100084
利用幅值约220 kV、脉宽约4 ns的高压纳秒脉冲源,对高压氮气亚纳秒气体开关放电特性进行了实验研究.实验结果表明:当气压在3~10 MPa间变化,间隔距离在0.6~1.2 mm间变化时,氮气间隙击穿电压随气压和间隙距离的增大而增大,并随气压的增大略呈饱和趋势,最高击穿电场约为2 MV/cm.开关输出电压波形的上升时间变化范围为145~190 ps,该上升时间随气压、击穿电场以及间隙距离增大而减小.
亚纳秒 气体开关 击穿电压 上升时间 预脉冲 Subnanosecond Gas switch Breakdown voltage Rise time Prepulse 
强激光与粒子束
2005, 17(7): 1079

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!