作者单位
摘要
1 中国科学院 长春精密机械与物理研究所,吉林长春30033
2 中国科学院大学 材料与光电研究中心,北京100049
针对某临近空间望远镜高面形精度和0°~65°观测角度的要求,设计了816 mm口径的SiC主镜组件。依据经验公式和拓扑优化方法,完成了主镜的设计,基于大口径反射镜复合支撑原理、功能分配和指标分配以及解耦标准设计了主镜支撑组件,最后根据支撑结构形式和装配公差要求设计了主镜组件装配工装并制定了装配工艺流程。对主镜组件进行了静力学和动力学仿真验证,然后对主镜组件进行振动、面形检测和倾角等试验验证。试验结果表明,主镜组件在光轴水平,1 g重力作用下面形精度RMS值为0.019λλ=632.8 nm),反射镜翻转180°后的面形RMS为0.02λ;总质量为102.7 kg,基频为171 Hz,振动前后RMS值基本不变,与分析结果吻合。证明该主镜组件的设计与装调工艺的合理性,满足临近空间望远镜的设计要求。
临近空间 复合支撑 仿真分析 面形检测 力学试验 near space compound support simulation analysis surface shape error test mechanical test 
光学 精密工程
2021, 29(3): 558
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
鉴于空间遥感器反射镜组件需要具有高面形精度、高可靠性和高稳定性支撑的性能, 设计了一种应用于天基反射镜的三点背部支撑结构, 该支撑结构包括锥套、柔节和修研垫。对三点背部支撑的支撑原理以及工程实现开展了深入研究。对引起三点背部支撑反射镜组件面形误差变化的误差源进行了归纳总结, 研究了各个误差源引起面形变化的作用机理, 对支撑结构开展相应的设计来缓解各个误差源导致的反射镜的面形精度的变化。首先采用有限元仿真的方法对设计结果开展静、动力学仿真, 然后对加工装配完成的反射镜组件开展了试验测试。测试结果表明, 在工作状态下采用该三点支撑结构的镜组件的面形误差优于λ/60(λ=632.8 nm), 镜体刚体位移小于0.01 mm, 镜体转角小于2″, 质量小于4.5 kg。整个组件具有合理的模态分布, 基频是254 Hz, 大大高于设计要求值120 Hz。镜组件在正弦振动和随机振动下的最大放大倍率为1.73倍, 在正弦振动和随机振动下的最大应力为369 MPa, 远低于选用材料的屈服极限。
空间遥感器 背部支撑 仿真分析 面形误差测试 力学试验 space remote sensor back support simulation analysis surface shape error test mechanical test 
红外与激光工程
2019, 48(7): 0718004
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 吉林建筑大学, 吉林 长春 130118
针对空间遥感器反射镜对支撑功能的需求,设计了一种应用于空间领域的大口径反射镜复合支撑结构。该复合支撑结构包括A框加切向拉杆的周边支撑和3组whiffletree结构组成的背部支撑。研究了复合支撑的支撑原理和工程实现。基于功能分配和指标分配的理念设计了复合支撑结构。采用有限元分析的手段对设计结果进行了静力学和动力学仿真验证, 然后对实际的支撑系统进行了相关的试验测试。试验结果表明, 采用复合支撑的反射镜组件在工作状态下的面形精度优于λ/50(λ=632.8 nm), 镜体刚体位移小于0.01 mm, 镜体转角小于2″, 质量小于50 kg。整个组件模态分布合理, 基频为161 Hz, 远高于设计要求的120 Hz。各项仿真和测试结果均表明该复合支撑效果良好, 满足空间遥感器对可靠性和稳定性的需求。
空间遥感器 大口径反射镜 复合支撑 仿真分析 面形检测 力学试验 space remote sensor large aperture mirror compound support simulation analysis surface shape error test mechanical test 
光学 精密工程
2016, 24(7): 1719

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!