Author Affiliations
Abstract
1 Technische Universität Darmstadt, Darmstadt, Germany
2 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
3 Laboratoire pour l’Utilisation des Lasers Intenses, CNRS, Ecole Polytechnique, Palaiseau, France
4 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
5 Technische Universität Dresden, Dresden, Germany
6 Helmholtz-Institut Jena, Jena, Germany
We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments (PHELIX) and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments (PEnELOPE) facilities. This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality. Its implementation at PHELIX allowed one to bypass the front-end amplifier, which is known to be a source of pre-pulses. With the bypass, an amplified spontaneous emission contrast of $4.9\times {10}^{-13}$ and a pre-pulse contrast of $6.2\times {10}^{-11}$ could be realized. Due to its high stability, high beam quality and its versatile pump amplifier, the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.
high-intensity laser temporal laser contrast ultrafast optical parametric amplification 
High Power Laser Science and Engineering
2023, 11(4): 04000e48
Author Affiliations
Abstract
1 Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
2 Department of Physics, Harbin Institute of Technology, Harbin 150001, China
3 Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
The control of ultrafast optical field is of great interest in developing ultrafast optics as well as the investigation on various light-matter interactions with ultrashort pulses. However, conventional spatial encoding approaches have only limited steerable targets usually neglecting the temporal effect, thus hindering their broad applications. Here we present a new concept for realizing ultrafast modulation of multi-target focal fields based on the facile combination of time-dependent vectorial diffraction theory with fast Fourier transform. This is achieved by focusing femtosecond pulsed light carrying vectorial-vortex by a single objective lens under tight focusing condition. It is uncovered that the ultrafast temporal degree of freedom within a configurable temporal duration (~400 fs) plays a pivotal role in determining the rich and exotic features of the focused optical field at one time, namely, bright-dark alternation, periodic rotation, and longitudinal/transverse polarization conversion. The underlying control mechanisms have been unveiled. Besides being of academic interest in diverse ultrafast spectral regimes, these peculiar behaviors of the space-time evolutionary beams may underpin prolific ultrafast-related applications such as multifunctional integrated optical chip, high-efficiency laser trapping, microstructure rotation, super-resolution optical microscopy, precise optical measurement, and liveness tracking.
ultrafast optical field vectorial diffraction theory fast Fourier transform vectorial vortex beam space-time shaping 
Opto-Electronic Advances
2022, 5(3): 210026
Author Affiliations
Abstract
National Key Laboratory on High-power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
The vector dynamics of solitons are crucial but easily neglected for realizing vortex solitons. In this Letter, we investigate the effect of vector dynamics on cylindrical vector beams (CVBs) implementation and propose a novel technical method to realize femtosecond CVBs based on vector-locked solitons, which are presented as group-velocity-locked vector solitons (GVLVSs) in the experiment. The outstanding vector properties of GVLVSs not only greatly improve the efficiency of solitons converted into CVBs and output power of CVBs (2.4 times and 4.1 times that of scalar solitons and vector change periodical solitons, with the purity of 97.2%), but also relax the obstacle of ultrafast CVBs from the fundamental frequency to the harmonic regime (up to 198 MHz) for the first time, to the best of our knowledge. This is the highest repetition rate reported for ultrafast CVBs based on passive mode-locking. The investigation of the influence of solitons vector dynamics evolution on the realization of CVBs provides guidance for the excellent performance of ultrafast CVBs.
cylindrical vector beam ultrafast optical switch laser mode-locking 
Chinese Optics Letters
2021, 19(11): 111903
作者单位
摘要
北京大学 物理学院 人工微结构和介观物理国家重点实验室,北京100871
随着超快光学的发展和对以Bi2Te3为代表的拓扑绝缘体材料研究的深入,近几年,将拓扑绝缘体薄膜应用于超快光器件的研究方向发展迅速并发表了一系列研究成果,本文综述了近年来基于拓扑绝缘体材料的超快激光及光器件的研究。从材料结构及制备方法出发,介绍了其独特的光学及光电特性,总结了其在超快激光及光器件中的应用研究进展,回顾和讨论了这一领域的成就和挑战,并对将拓扑绝缘体薄膜材料应用于超快光器件的进一步研究进行了展望。
拓扑绝缘体材料 Bi2Te3薄膜 宽频强非线性效应 饱和吸收体 超快光器件 Topological insulator materials Bi2Te3 thin film Broadband strong nonlinear effect Saturated absorber Ultrafast optical devices 
光子学报
2021, 50(8): 0850210
Author Affiliations
Abstract
1 East China Normal University, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
2 Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
3 Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
In ultrafast optical imaging, it is critical to obtain the spatial structure, temporal evolution, and spectral composition of the object with snapshots in order to better observe and understand unrepeatable or irreversible dynamic scenes. However, so far, there are no ultrafast optical imaging techniques that can simultaneously capture the spatial–temporal–spectral five-dimensional (5D) information of dynamic scenes. To break the limitation of the existing techniques in imaging dimensions, we develop a spectral-volumetric compressed ultrafast photography (SV-CUP) technique. In our SV-CUP, the spatial resolutions in the x, y and z directions are, respectively, 0.39, 0.35, and 3 mm with an 8.8 mm × 6.3 mm field of view, the temporal frame interval is 2 ps, and the spectral frame interval is 1.72 nm. To demonstrate the excellent performance of our SV-CUP in spatial–temporal–spectral 5D imaging, we successfully measure the spectrally resolved photoluminescent dynamics of a 3D mannequin coated with CdSe quantum dots. Our SV-CUP brings unprecedented detection capabilities to dynamic scenes, which has important application prospects in fundamental research and applied science.
ultrafast optical imaging multi-dimensional imaging computational imaging compressed sensing image reconstruction 
Advanced Photonics
2021, 3(4): 045001
胡必龙 1,2,3王逍 1,2,*李伟 1,2,3曾小明 1,2[ ... ]粟敬钦 1,2
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 等离子体物理重点实验室, 四川 绵阳 621900
3 中国工程物理研究院研究生院, 北京 100088
针对超高峰值功率激光系统中脉冲的压缩及聚焦过程进行建模,基于光线追迹法和夫琅禾费衍射方法对平行光栅对压缩器的色散过程和抛物面镜的聚焦过程进行了模拟分析,同时采用Square-Radial多项式对方形口径的波前畸变进行描述,分析了近场存在4种不同波前畸变情况时对远场时空分布的影响,定量给出了不同情况下波前畸变误差的允许范围。
超快光学 脉冲压缩 超快激光 衍射光栅 波前畸变 时空特性 
光学学报
2020, 40(11): 1132001
Author Affiliations
Abstract
1 East China Normal University, School of Physics and Electric Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
2 Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
3 University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
4 Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
5 California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields.
ultrafast optical imaging compressed sensing computational imaging single-shot measurement 
Advanced Photonics
2020, 2(1): 014003
作者单位
摘要
1 Institut National de la Recherche Scientifique – Centre Energie, Materiaux et Telecommunications (INRS-EMT), Varennes, QC J3X 1S2 Canada
2 Department of Electrical and Computer Engineering, University of British Columbia (UBC), Vancouver, British Columbia, V6T 1Z4 Canada
3 Institute of Electromagnetic Fields, ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
silicon photonics ultrafast optical signal processing integrated microwave photonics (IMWPs) 
Frontiers of Optoelectronics
2018, 11(2): 163–188
作者单位
摘要
1 深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
2 深圳大学信息工程学院, 广东 深圳 518060
针对传统X射线快门选通微通道板(MCP)分幅相机利用针孔阵列获取目标图像时视角不一致的问题, 提出一种单一视角X射线变像管分幅方法。利用电子束团在电子光学交叉点所携带信息的全息性和可分割性, 设计了一种单一视角多幅输出图像的静电聚焦变像管, 输出端配接MCP分幅单元以实现图像选通和增强功能。与传统门控MCP分幅管相比, 其既能实现图像视角的同一性, 又可以避免直穿光激发荧光屏对输出图像的影响, 具有更高的信噪比。所设计的分幅变像管阴极有效工作直径为40 mm, 输出荧光屏直径为40 mm, 放大倍率为1.29, 中心理论空间分辨率达到60 lp/mm, 边缘空间分辨率达到26 lp/mm, 分幅曝光时间特性由快门选通MCP分幅单元的选通脉宽决定。该方法为实现X射线分幅相机视角同一性给出了一条有效途径。
光学器件 分幅相机 超快光学 微通道板选通 变像管 
光学学报
2017, 37(5): 0523001
作者单位
摘要
北京理工大学信息科学技术学院光电工程系, 北京 100081
随着大于40 Gb/s高速光通信系统的出现, 为了保证光信号传输质量, 需要对光信号进行监测。对于带宽超过传统光电探测器和示波器可测量带宽的高比特率数据光信号, 光采样技术是进行时域测量的重要手段。采用固定频差的方法可以用百兆速率的采样脉冲对高速光信号进行采样, 降低了对采样后电数据处理系统带宽的要求。在对基于周期极化铌酸锂(PPLN)波导中和频效应的采样过程进行建模仿真的基础上, 实现了对Optsim获得的光传输线内10 Gb/s的非归零码(NRZ)和归零码(RZ)信号的采样。采用软件同步算法对采样数据进行处理, 获得信号的眼图, 这一方法可使采样系统对硬件的要求降到最低。与理想与门获得的采样结果进行比较, 对PPLN波导的光采样特性和采样质量进行了分析。
非线性光学 高速光信号处理 光采样系统建模 周期极化铌酸锂 软件同步光采样 
光学学报
2008, 28(s2): 283

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!