作者单位
摘要
1 南京工业大学电气工程与控制科学学院, 江苏 南京 211816
2 南京工业大学生物与制药工程学院, 江苏 南京 211816
近红外光谱数据量大, 需要进行压缩, 以降低建立光谱校正模型的计算复杂度, 提高模型精度和稳健性。 为此, 提出了一种基于离散萤火虫算法(discrete firefly algorithm)的近红外光谱波长变量筛选方法。 首先采用蒙特卡罗方法剔除异常值, 并应用Kennard-Stone法进行校正样本的选择。 对通用萤火虫算法进行离散化处理, 改进了吸引度的自适应公式, 在移动公式中增加了牵引权重, 以适应离散化处理的影响和优化算法, 并在离散萤火虫算法中加入精英保留策略, 加快算法的收敛速度。 实验中找到DFA算法中的各项参数中的最佳值。 通过离散萤火虫算法优选波长变量, 建立发酵液中丁二酸含量的近红外光谱偏最小二乘回归(partial least squares regression)校正模型。 与标准遗传算法(genetic algorithm)优选波长方法进行了比较。 结果显示, 基于离散萤火虫算法的波长优选方法所建立的PLS校正模型, 其校正集的相关系数(R2c)为0.986, RMSEC为0.409, 预测集的相关系数(R2p)为0.969, RMSEP为0.458, 模型稳健性和精度都要优于全光谱建模以及遗传算法波长优选方法。 显示了DFA在近红外光谱数据筛选方面的优越性。
离散萤火虫算法 近红外光谱 波长选择 丁二酸发酵 Discrete firefly algorithm Near infrared spectroscopy Wavelength variable selection Succinic acid fermentation 
光谱学与光谱分析
2016, 36(12): 3931

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!