王鹤 1,2陈立国 1,*
作者单位
摘要
1 苏州大学 机电工程学院,江苏苏州2502
2 河南工程学院 机械工程学院,河南郑州451191
为了便于在数字微流控芯片上实施完整且高自动化的生化分析,在一个柔性基底上将芯片的两种常规结构加以集成,建立混合式结构,并对液滴在封闭区和开放区之间的跨区往返运动进行研究。首先,根据力平衡分析法分析液滴在两区边界处的运动特性,推导出跨越边界的条件,得到实现两区运动的优化措施。接着,在三种柔性基底上实现液滴的两区往返运动。然后,分析了封闭区上极板空间横向位置和纵向位置对液滴两区运动的影响。最后,研究了上极板厚度对液滴两区运动的影响。实验结果表明:封闭区上极板横向位置模式Ⅱ以及薄的上极板有利于实现液滴的自由跨区往返运动,而且能够降低液滴的驱动电压;对于0.8~1.2 μL的液滴来说,以聚对苯二甲酸乙二醇脂(Polyethylene terephthalate, PET)塑料片材为基底的柔性芯片上封闭区极板间距控制在150~350 μm内可实现液滴的双向跨区运动。实验结果证明了液滴能够在封闭-开放区间自由往返运动,混合式结构便于实现在单一芯片上的液滴操作及高自动化程度的分析检验。
数字微流控 介电湿润 两区运动 混合式结构 digital microfluidic electrowetting-on-dielectric two-region motion hybrid configuration 
光学 精密工程
2022, 30(6): 711
作者单位
摘要
苏州大学 机器人与微系统研究中心, 江苏 苏州 215021
针对目前液滴在方形电极上分离存在的成功率低, 分离后的子液滴体积误差大等问题, 本文提出了一种扇形电极结构的数字微流控芯片。在分析液滴在方形电极上分离的影响因素后, 结合半月形电极、哑铃状电极和弓形电极的优点设计了扇形电极。与传统分离方式相比, 新型芯片在分离前能够调整液滴的初始位置, 分离过程中能保证液滴平稳收缩, 从而提高分离的成功率和精度。最后使用去离子水作为实验对象, 对扇形芯片的分离效果进行了实验验证。结果表明: 使用扇形电极在不同极板间距下分离液滴的成功率均高于传统电极, 并且分离后的子液滴平均误差在±2%以内, 变异系数低至1.83%, 通过减少分离电极的尺寸还能进一步提高分离精度。实验数据证明了扇形分离电极数字微流控芯片能够提高分离的成功率和精度。
数字微流控芯片 介电湿润 扇形电极 分离 体积精度 变异系数 digital microfluidics electrowetting-on-dielectric fan-shaped electrode splitting volume inaccuracy coefficient of variation 
光学 精密工程
2019, 27(9): 1919
作者单位
摘要
苏州大学 机器人与微系统研究中心&苏州纳米科技协同创新中心, 江苏 苏州 215123
为了降低数字微流控芯片的驱动电压, 将传统的方形驱动电极结构设计为半月形, 并研究了不同参数的半月形驱动电极降低驱动电压的效果。首先, 根据介电湿润的基本原理分析了不同驱动电极形状对降低驱动电压的影响。然后, 通过流体体积法(VOF)对液滴的运动过程进行建模和数值仿真; 根据数值仿真结果对比分析了不同结构参数的半月形驱动电极随驱动时间的运动过程。最后, 设计了4种不同结构参数的半月形驱动电极芯片, 并对其驱动液滴的效果进行了试验验证。结果表明: 研制的4种半月形驱动电极微流控芯片中, 电极圆弧直径等于电极长度结构的芯片其驱动电压比其他3种电极结构的芯片的驱动电压至少降低了15.6%, 而且可以在16 V的驱动电压下使1 μL去离子水液滴的运动速度达到1.6 cm/s, 是设计为半月形驱动电极中的最优设计。实验数据证明了电极圆弧直径等于电极长度的半月形驱动电极结构可有效降低微流控芯片的驱动电压。
数字微流控芯片 半月形电极 驱动电压 介电湿润 流体法 digital microfluidic device crescent electrode driving voltage electrowetting-on-dielectric Volume of Fluid(VOF) method 
光学 精密工程
2014, 22(3): 633
作者单位
摘要
苏州大学 机器人与微系统研究中心,江苏 苏州 215021
针对目前单极板数字微流控芯片驱动液滴的效果多通过数值仿真方法验证而缺乏实验支持,本文提出将单极板结构中的零电极进行悬空设计,并通过实验对比分析了设计的悬空零电极单极板结构的芯片和传统双极板结构的芯片对液滴的驱动效果。首先,基于介电湿润原理,推导出传统双极板结构中液滴所受到的介电驱动力以及每个阻力,接着,对文中设计的悬空零电极结构的单极板数字微流控芯片中液滴的受力情况进行分析。然后,对比分析两种结构的数字微流控芯片中液滴的受力情况。最后,对两种结构的数字微流控芯片驱动去离子水微液滴的效果进行试验验证。实验结果显示: 驱动同等体积大小的微液滴时,本文设计制作的悬空零电极单极板芯片比双极板结构的芯片所需的电压更低,液滴的运动速度更快; 当有效驱动电压达到44 V时,液滴的速度可以达到15 cm/s。得到的实验结果证明了在单极板悬空零电极结构的数字微流控芯片上液滴驱动速度更高,驱动电压更低。
数字微流控芯片 介电湿润 单极板 液滴速度 digital microfluidic device electrowetting-on-dielectric EWOD single-plate droplet velocity 
光学 精密工程
2014, 22(1): 138
作者单位
摘要
苏州大学 机器人与微系统研究中心,江苏 苏州 215021
针对目前数字微流控芯片驱动电压比较高的问题,本文对比传统的驱动电极结构,研制了一种可以降低驱动电压的半月形驱动电极数字微流控芯片。首先,基于介电湿润原理,分析微液滴所受介电湿润力和微液滴接触圆上有效三相接触线所对应弦长的关系。接着,对比分析了传统的方形、叉齿形驱动电极与提出的半月形驱动电极上液滴有效三相接触线所形成的弦长大小; 分析得出3种驱动电极结构中半月形驱动电极所形成的有效弦长最大,从而表明半月形驱动电极的数字微流控芯片上介电驱动力最大。最后,利用设计制作的3种驱动电极介电湿润芯片分别实验验证驱动液滴的效果。结果表明,所研制的半月形驱动电极数字微流控芯片的最小驱动电压分别比方形和叉齿形驱动电极芯片降低了约37%和67%。另外,当有效驱动电压为60 V时,半月形驱动电极芯片上2 μL去离子水微液滴的速度约为10 cm/s,分别是方形与叉齿形驱动电极芯片上液滴速度的3倍和2倍。得到的实验数据证明了半月形驱动电极数字微流控芯片实现了降低芯片驱动电压的目的。
数字微流控芯片 介电湿润 微液滴 半月形电极 驱动电压 digital microfluidic device electrowetting-on-dielectric micro-droplet crescent electrode driving potential 
光学 精密工程
2013, 21(10): 2557

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!