作者单位
摘要
1 西南科技大学 理学院,四川 绵阳 621010
2 中国工程物理研究院 高功率微波技术重点实验室,四川 绵阳 621999
为实现高功率微波(HPM)系统的小型化,设计一个S波段较低磁场相对论返波管(RBWO)振荡器。针对低磁场特点,分析慢波结构、引导磁场、束压、束流等对输出微波的影响,通过模拟软件(PIC)优化结构。以此设计引导磁场为0.24 T,电子束束压为725 kV,束流为6 kA,频率为3.53 GHz,输出微波功率为1.22 GW,束波转换效率为27%的低磁场S波段相对论返波管。仿真实验结果表明:在强流电子束加速器平台上外加磁场为0.24 T时,得到平均功率1 GW、频率3.58 GHz、脉宽90 ns的微波输出,与理论值一致。进行了重频为1 Hz,20 s的稳定性实验,该实验结果为实现相对论返波管的永磁包装奠定了良好的基础。
相对论返波管 S波段 高功率微波 低磁场 relativistic backward wave oscillator S-band High Power Microwave low guiding magnetic field 
太赫兹科学与电子信息学报
2021, 19(3): 380
作者单位
摘要
西北核技术研究所 高功率微波技术重点实验室, 西安 710024
对Ka波段TM02模式低磁场相对论返波管的结构特点、工作原理进行了介绍,详细分析了该器件以TM02模工作的模式选择机制。通过粒子模拟,该器件在1 T引导磁场下获得了功率为493 MW、频率29.3 GHz的微波输出,工作模式及频率与理论设计相一致。随后,基于模拟中的结构参数开展了初步的实验研究,当二极管电压为580 kV、电流为3.56 kA、引导磁场1 T时,获得了功率286 MW、频率29.3 GHz、脉宽约10 ns的微波输出。实验获得的微波频率与数值模拟一致,但是微波功率与数值模拟结果有明显差异,并且微波脉冲后沿有明显的缩短,分析认为在低磁场下后端谐振腔链受到电子轰击是导致该问题的主要原因。
相对论返波管 TM02模式 Ka波段 低磁场 脉冲缩短 relativistic backward wave oscillator TM02 mode Ka-band low guiding magnetic field pulse shortening 
强激光与粒子束
2018, 30(7): 073003
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
设计了一种工作在Ku波段的低磁场同轴相对论返波管。器件工作在同轴TM01近π模式, 采用两段式慢波结构构型, 在前后段慢波结构中分别主要进行电子束调制与能量提取, 以实现高效率工作。通过设计非对称反射腔, 引入电子束预调制, 进一步加深电子束调制深度, 提高了束波互作用效率。通过调节慢波结构中间漂移段长度, 进一步优化器件内部场分布, 提取段慢波结构处轴向电场强度得到显著增强, 器件工作效率可提升至35%。最终, 当磁场强度0.6 、二极管电压490 V、二极管电流7.5 A时, 获得1.27 GW微波输出, 效率约35%, 微波频率为14.7 GHz。
高功率微波 低磁场 同轴相对论返波管 高效率 Ku 波段 电子束预调制 high power microwave low magnetic field coaxial relativistic backward wave oscillator high efficiency Ku band electron beam pre-modulation 
强激光与粒子束
2016, 28(9): 093002
作者单位
摘要
西北核技术研究所,西安,710024
谐振腔反射器到慢波结构输入端之间的漂移段长度对返波管效率有较大影响,文章对该影响进行了理论分析和数值模拟.结果表明:由于谐振腔反射器对电子束的预调制作用,返波管输出功率随漂移段长度的增加而呈现多峰值现象,在选取合适的漂移段长度时,可以显著提高其微波产生的效率.在SINUS-881加速器上开展实验,在引导磁场为0.7 T,漂移段长度为4.9 cm的条件下,实验获得了功率为700 MW,频率为8.7 GHz,脉宽20 ns的微波输出,效率约14%.实验研究证实了模拟结果的正确性.
高功率微波 相对论返波管 谐振腔反射器 漂移段 低磁场 
强激光与粒子束
2006, 18(9): 1531
作者单位
摘要
国防科学技术大学光电科学院与工程学院,湖南长沙410073
设计了一种能工作在低磁场高功率的慢波器件,该器件通过谐振腔将切仑科夫振荡器与锥形放大器有机地结合,充分利用电子的能量,实现了高效的微波产生.给出了初步的实验结果,在束流电压450kV,电流2.3 kA,导引峰值磁场0.6T的情况下,得到230 MW,频率为10.33 GHz,模式TM01的微波输出,效率达到23%.实验结果与粒子模拟结果基本吻合.
谐振腔 切仑科夫振荡器 锥形放大器 低磁场 Resonant cavity Cerenkov oscillator Tapered amplifier Low magnetic field 
强激光与粒子束
2005, 17(5): 733
作者单位
摘要
国防科学技术大学光电科学与工程学院,湖南,长沙,410073
用理论和粒子模拟相结合的方法分析了强流薄环形相对论电子束在低磁场导引下,在均匀波导,无箔二极管,以及锥形波导和渐减磁场位形条件下的传输过程,研究了束包络的波动和如何减少波动的问题.分析表明:在无箔二极管中一个适当渐增的磁场位形可以有效地抑制束电子的径向运动,从而减少电子在波导中的波动幅度;电子束在锥形波导和渐减磁场位形中运动,不会增加束电子的波动.因此适当的磁场位形可以降低微波器件对导引磁场的要求,有利于实现永磁包装微波器件。
强流相对论环形电子束 低磁场高功率微波器件 粒子模拟 Intense relativistic annular beam HPM source operated at low magnetic field Particle simulation 
强激光与粒子束
2005, 17(3): 412
作者单位
摘要
1 电子科技大学 物理电子学院,强辐射实验室,四川 成都,610054
2 电子科技大学 电磁场与微波技术系,四川 成都,610054
在传统谐振法基础上发展了一种计算慢性结构(SWS)冷腔参数的脉冲响应法,它的主要思想是利用有丰富谐波成分的窄脉冲作为激励源来代替实验系统中的扫频源,从而使得获取RBWO的色散曲线速度大大加快.这种方法使得脉冲响应法成为计算SWS冷腔参数的一种快速数值算法,更加适合于数值计算,并在研究HL-RBWO时得到有效的应用.
脉冲响应法 色散曲线 耦合阻抗 慢波结构 高效率高功率低磁场相对论返波管(HL-RBWO) Impulse respond method Dispersion curve Coupled impedance HL-RBWO 
强激光与粒子束
2003, 15(5): 471
作者单位
摘要
国防科学技术大学 理学院,定向能技术研究所,湖南长沙,410073
设计了一种新型的多波切伦柯夫振荡器,即在第二慢波段和输出喇叭之间加一个谐振腔,并采用PIC方法模拟了器件产生微波的物理过程.结果表明这种新型器件符合普通多波切伦柯夫振荡器的基本特征,同时具有纵向尺寸短,导引磁场低,功率、效率高等优点.
多波切伦柯夫振荡器 谐振腔 低磁场 粒子模拟 Multiwave Cerenkov generator (MWCG) Resonant cavity Low magnetic field PIC simulation 
强激光与粒子束
2003, 15(1): 85

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!