周笑 1,2,3左超 1,2,3,**刘永焘 1,2,3,*
作者单位
摘要
1 南京理工大学电子工程与光电技术学院智能计算成像实验室(SCILab),江苏 南京 210094
2 南京理工大学江苏省光谱成像与智能感知重点实验室,江苏 南京 210094
3 南京理工大学智能计算成像研究院(SCIRI),江苏 南京 210019
随着生物医学研究对复杂组织结构和功能的深入探索,高分辨率、高信噪比的深组织成像技术变得愈加重要。传统的显微镜技术往往局限于二维、透明的生物薄样本的观测,这在很大程度上无法满足当前生物医学领域对三维深组织体成像的研究需求。光片荧光显微镜凭借其低光损伤、高采集速率、大视场、体成像等优点被生物学家广泛使用。然而,生物组织固有的高散射特性仍然为深层成像带来了巨大的挑战。本文重点介绍了光片荧光显微成像技术在深组织成像领域的最新进展,特别是应对高散射样本挑战的解决策略,旨在为相关领域的研究人员提供有价值的参考,助力其对该前沿技术的最新进展和应用前景的理解。首先,阐述了光片荧光显微镜的基本原理和高散射吸收特性的形成原因及影响;然后,进一步阐明了增加组织穿透深度、应对光散射和吸收等问题的最新进展;最后,探讨了具有大穿透深度和强抗散射能力的光片荧光显微成像技术的发展前景以及潜在应用。
荧光显微 光片照明 深组织成像 三维成像 光学散射 
激光与光电子学进展
2024, 61(2): 0211010
于湘华 1刘超 1,2柏晨 1杨延龙 1[ ... ]姚保利 1,2,*
作者单位
摘要
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
2 中国科学院大学, 北京 100049
生物医学研究的发展对光学显微成像的性能,如空间分辨率、成像速度、多维度信息、成像质量等提出了更高的要求。光片荧光显微采用一个薄片光从侧面激发样品,在正交方向探测成像,具有快速三维层析成像和对样品光漂白和光毒性小的优点,是活体生物样品长时间显微观测的理想工具。本文介绍了光片荧光显微成像技术的基本原理及其主要特点;综述了光片荧光显微面临的主要技术问题,以及为解决这些问题而发展出的新原理、新思路和新方法;例举了光片荧光显微成像技术在细胞生物学、发育生物学和神经科学等领域的应用;讨论了该技术的发展趋势及前景。该研究旨在帮助研究者系统了解光片荧光显微成像技术的基本知识、最新研究发展趋势和潜在应用,为该领域科学研究提供参考。
显微 荧光显微 光片照明 三维成像 生物医学成像 
激光与光电子学进展
2020, 57(10): 100001
作者单位
摘要
1 苏州大学 光电科学与工程学院, 江苏 苏州 215006
2 江苏省先进光学制造技术重点实验室 教育部现代光学技术重点实验室, 江苏 苏州 215006
为解决目前光片荧光显微镜光片厚度单一的问题, 基于变倍扩束原理进行了可变光片照明系统设计。首先, 对光片照明系统各组成部分进行了高斯光学计算, 得到光片厚度与扩束比的关系以及扩束比与各组元垂轴放大率、焦距的关系; 然后, 设计了基于10倍扩束的可变光片照明系统, 得到厚度和长度连续可变的光片; 最后, 对光片参数、均匀性及系统的公差进行分析。设计结果表明, 连续可变光片的厚度为3.33~33.3 μm, 在YOZ平面上60%的光片高度区域内, 低(1×)、中(6×)和高(10×)扩束比下的照度均匀性分别达到0.65、0.4和0.61。公差分析表明, 光片厚度在1×扩束比时的最大改变量小于设计值的15%, 在6×和10×扩束时小于6%。设计实现了光片厚度的连续变化, 且在60%的光片高度区域内有利于样本的观察。
光学设计 可变光片照明系统 无焦变倍扩束 照度均匀性 optical design variable light-sheet illumination system afocal zoom expanding illumination uniformity 
红外与激光工程
2019, 48(11): 1114003
作者单位
摘要
1 华中科技大学光学与电子信息学院, 湖北 武汉 430074
2 华中科技大学Britton Chance生物医学光子学研究中心, 湖北 武汉 430074
随着科学的进步,生命科学的研究对象由单个器官向组织体、离体组织切片及发育过程中的活体胚胎转变。荧光特异性标记的出现,为追踪物质在单细胞、组织体、器官甚至整个胚胎内的转移过程提供了手段。为了实现整个追踪过程,需要对活体胚胎进行无损、非侵入式的亚细胞级别成像,这就对荧光显微技术提出了更高的要求。在传统荧光显微技术基础上发展了光片照明和超分辨荧光显微技术。前者通过选择平面照明方式,只激发探测物镜焦平面附近的样品,因其具有高穿透深度、低漂白和高成像速度而广泛应用于三维活体组织成像;后者利用特殊的光调控手段将显微镜的分辨率提升至纳米水平,成为研究亚细胞水平生命活动的有力**。通过介绍2大技术的发展、融合以及目前所遇到的问题,探究新型的、适宜观察三维厚组织样品亚细胞结构和生命过程的成像方法。
生物光学 光片照明 超分辨率 厚组织成像 三维成像 贝叶斯分析 
中国激光
2018, 45(3): 0307006
光片荧光显微成像下载:1796次
作者单位
摘要
北京大学分子医学研究所膜生物学国家重点实验室, 北京 100871
在过去的20年, 激光扫描共聚焦显微镜一直是在细胞水平和亚细胞水平上观察生命活动的标准工具, 但是基于针孔的共聚焦显微镜的光学层切是以牺牲焦平面以外的被激发的荧光色团和较大的光毒性为代价的。作为一种新型的荧光显微镜, 光片荧光显微镜采用侧向照明的方式, 对样品直接进行面成像。相对于点扫描的成像方式, 光片显微镜成像速度远远高于激光扫描共聚焦显微镜, 使得研究一些高速的精细生命活动过程成为了可能。光片荧光显微镜的另外一个优点是只有光片处的样品才会被激发, 处于光片以外的样品则不会被激发, 因此光毒性较小, 使得人们能够在更长的时间尺度下观察样品。正是由于光片荧光显微镜特殊的照明和成像方式, 才使其在大样本的三维高速成像中起到不可替代的作用。本文简要回顾了光片荧光显微镜发展的历史及研究现状, 旨在为该领域的科研人员对光片荧光显微镜的现状及未来发展方向提供个人理解。
显微 荧光成像 光片照明 显微成像 光毒性 
光学学报
2017, 37(3): 0318007

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!