作者单位
摘要
1 江苏大学食品与生物工程学院, 江苏 镇江 212013 江苏省智能农业与农产品加工国际合作联合实验室, 江苏 镇江 212013
2 江苏大学食品与生物工程学院, 江苏 镇江 212013
3 江苏大学食品与生物工程学院, 江苏 镇江 212013 现代农业装备与技术教育部重点实验室(江苏大学), 江苏 镇江 212013
为实现柑橘可溶性固形物含量(SSC)快速无损检测, 基于可见/近红外技术开发了低功耗手持式柑橘可溶性固形物含量无损检测系统。 以宽谱LED光源结合特征窄带微型光谱仪为核心, 设计了手持式柑橘可溶性固形物含量无损检测终端。 开发了基于物联网技术的水果光谱仪云端数据系统, 该系统主要包括用户库、 设备库、 检测数据库和模型库, 通过通讯模块与手持式无损检测终端相连接, 可以实现光谱采集参数修改、 云端数据上传与下载、 云模型的调用等功能。 利用该检测系统获取的光谱数据, 建立一维卷积神经网络(1D-CNN)模型用于预测柑橘的可溶性固形物含量。 该网络包含输入层、 卷积层、 池化层、 全连接层和输出层等7层结构。 主机采集柑橘的光谱数据并建立1D-CNN柑橘可溶性固形物含量预测模型, 并用该模型与多种传统回归方法进行对比。 1D-CNN模型的预测相关系数和预测均方根误差分别为0.812, 0.488, 优于偏最小二乘法(PLS), 人工神经网络(ANN)和支持向量机(SVM)。 采用基于模型的迁移学习方法, 基于主机的1D-CNN模型对从机进行模型传递, 研究了从机标准样本数量对模型传递的影响。 发现使用少量从机光谱样本即可取得较好的效果, 从机预测集均方根误差为0.531。 研究结果表明, 研发的柑橘SSC云模型的手持式可见近红外无损检测系统具有检测快速、 低成本、 操作简便等优点, 基于该检测系统的1D-CNN网络可以有效提取柑橘光谱的有效特征并进行回归分析。 借助迁移学习算法, 可以实现1D-CNN模型在不同装置间的有效传递, 满足柑橘可溶性固形物含量无损检测的需求。 为手持式水果内部品质无损检测系统的开发与应用提供了借鉴和参考。
无损检测 柑橘 可见/近红外光谱 可溶性固形物含量 一维卷积神经网络 迁移学习 模型传递 Nondestructive detection Mandarin Visible/near infrared spectroscopy Soluble solid content One-dimensional convolutional neural network Transfer learning Model transfer 
光谱学与光谱分析
2023, 43(9): 2792
作者单位
摘要
1 新疆农业大学数理学院, 新疆 乌鲁木齐 830052
2 新疆农业科学院综合试验场, 新疆 乌鲁木齐 830013
3 新疆农业大学机电工程学院, 新疆 乌鲁木齐 830052
可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要生理指标, 能够用于苹果品质分析和成熟度预测。 以新疆阿克苏冰糖心红富士苹果为研究对象, 从果实膨大定形期至完熟期, 以等间隔周期3 d采摘样本, 测其380~1 100 nm的可见/近红外光谱和SSC, 共552个样本。 然后融合分数阶微分(FD)及置换重要性-随机森林(PIMP-RF)算法, 构建成熟期苹果SSC预测的集成学习模型。 结果表明, 基于PLS模型优选的分数阶微分阶次为0阶、 0.4阶、 1.1阶和1.6阶, 且通过PIMP-RF算法进行特征重要性和可解释性分析结果显示, 利用可见/近红外光谱预测成熟期苹果SSC的关键波长主要为可见光波段, 这为今后研发新疆冰糖心红富士苹果的快速无损检测设备提供参考; 基于分数阶微分技术和PIMP-RF算法构建的成熟期苹果SSC集成学习模型具有很好的预测能力, 其训练集的相关系数r等于0.989 2, 平均绝对误差MAE等于0.241 2, 均方根误差RMSE等于0.309 1, 平均绝对百分误差等于0.018 3; 测试集的相关系数r等于0.903 8, 平均绝对误差MAE等于0.549 9, 均方根误差RMSE等于0.740 8, 平均绝对百分误差等于0.043 4, 相比于FD0-PIMP-RF、 FD0.4-PIMP-RF、 FD1.1-PIMP-RF和FD1.6-PIMP-RF模型, 集成学习模型为最优。 故而, 集成分数阶微分技术与PIMP-RF算法, 结合可见近红外光谱技术可有效地实现成熟期苹果的可溶性固形物含量预测。
可见/近红外光谱 分数阶微分 置换重要性-随机森林 K近邻(KNN)回归 可溶性固形物含量 Visible/near-infrared spectrum Fractional differential Permutation importance-random forest K-nearest neighbors (KNN) regression Soluble solids content 
光谱学与光谱分析
2023, 43(10): 3059
作者单位
摘要
1 华东交通大学机电与车辆工程学院, 江西 南昌 330013 华东交通大学智能机电装备创新研究院, 江西 南昌 330013
2 华东交通大学机电与车辆工程学院, 江西 南昌 330013
柚子果皮厚, 果皮与果肉属于两种不同的介质, 对光的折射、 吸收程度存在差异, 针对建立水果可溶性固形物含量(SSC)检测模型时, 光谱采集量与目标不匹配, 导致模型精度差的问题, 以上饶马家柚为研究对象, 自主搭建可调实验平台, 采集并分析柚子整果的光能量衰减规律, 寻找柚子厚度与透光性的关系, 探索果皮厚度、 光透射深度对柚子SSC检测精度的影响。 首先将透射光源放置在柚子赤道圈的正上方, 统计柚子赤道圈不同区域接收到的光谱强度, 绘制光谱强度分布图, 结果显示, 距离光源发射点越远, 光谱强度越低, 入射点由远及近的位置接收的光强分别占33.40%、 2.90%、 0.50%、 0.40%、 0.20%, 柚子皮对光的吸收较为明显, 散射出的光所占比重较少; 采用切片法, 记录剩余厚度与对应的光谱强度值, 绘制光谱强度的变化规律曲线, 随着剩余厚度逐渐减少, 光谱强度逐渐增加, 在32.90 mm的位置, 光谱强度发生了巨大的变化, 果实厚度高于32.92 mm时, 果实接收的光谱强度普遍较低, 当果实低于32.92 mm时, 光谱强度呈跳跃式增加。 采集果肉、 整果、 果皮光谱, 采用偏最小二乘法(PLS)建立SSC预测模型, 去皮后的果肉模型相关性最高。 采集柚子果肉、 果皮+果肉厚度为40、 30、 20和10 mm时的光谱, 建立不同厚度的SSC预测模型, 果肉厚度为20、 40、 60和80 mm时, 预测集相关系数分别为0.91、 0.89、 0.87和0.86, 果肉在透射深度为20 mm时, 水果SSC预测模型精度最佳。 果皮+果肉的光谱透射深度为20、 40、 60和80 mm, 预测集相关系数分别为0.78、 0.86、 0.93和0.84, 果皮+果肉的透射深度为60 mm时, 有最好的预测效果。 研究结果表明, 果皮和果肉内部组织成分的差异, 会影响SSC预测的结果, 但是调整可见/近红外光在水果内部的传输距离, 可以优化模型精度, 研究揭示了可见/近红外光在水果组织中的漫透射传输特性, 可为厚皮果的品质在线分选装置研发提供实验依据。
光能量衰减 果肉和果皮 透射深度 可溶性固形物含量 传输特性 Light energy decay Pulp and peel Transmittance depth Soluble solids content Transmission characteristics 
光谱学与光谱分析
2023, 43(8): 2574
作者单位
摘要
1 广西大学机械工程学院, 广西 南宁 530004 北京市农林科学院智能装备技术研究中心, 北京 100097国家农业智能装备工程技术研究中心, 北京 100097
2 北京市农林科学院智能装备技术研究中心, 北京 100097国家农业智能装备工程技术研究中心, 北京 100097
可溶性固形物含量(SSC)是评价西瓜果肉品质优劣的关键指标。 西瓜SSC在线检测模型的建立, 可以实现西瓜品质按其SSC进行在线分级, 满足不同人群需求, 提高市场竞争力。 以160个京美2K西瓜为研究对象, 通过实验室自主研发的在线检测设备, 采集了西瓜两种姿态的可见近红外全透射光谱数据, 分别与西瓜不同部位SSC建立偏最小二乘回归(PLSR)预测模型, 探究西瓜SSC在线检测的最佳姿态和检测部位。 首先, 分别定义西瓜不同部位SSC测量值为瓜蒂糖、 中心糖、 瓜脐糖和整果糖, 在线检测的两种姿态分别定义为T1姿态和T2姿态。 其次对比西瓜不同部位SSC, 探讨西瓜SSC评价标准。 然后去除光谱透射强度值较低且频率较高, 包含大量噪声和无用信息的光谱数据, 最终选取波长范围(671~1 116 nm)的光谱进行分析。 采用卷积平滑(SGS)算法分别与多元散射校正(MSC)、 单位矢量归一化(UVN)和标准正态变量变换(SNV)这3种算法相结合对两种姿态下的光谱数据进行预处理, 随后对应西瓜不同部位SSC分别建立预测模型。 通过对比不同模型的预测结果发现: 使用SGS和MSC组合对T1姿态采集的光谱数据预处理效果最好, 而对于T2姿态的光谱数据使用SGS与UVN结合预处理效果最好; T1姿态明显比T2姿态的光谱数据所建模型的预测效果好; 对西瓜瓜蒂糖和整果糖的预测结果较好, 瓜脐糖次之, 中心糖最差。 最后采用竞争性自适应重加权算法(CARS)分别对预测瓜蒂糖和整果糖的模型进行优化。 其中, 共挑选出81个波长点用于建立预测瓜蒂糖模型, 106个波长点用于建立预测整果糖模型, 两模型的预测集相关系数分别为0.881 0和0.875 8, 均方根误差分别为0.866 7%和0.758 9%, 不仅模型得到了简化, 还提高了模型的预测精度。 研究结果表明, 西瓜不同姿态和对不同部位SSC预测的差异, 会影响西瓜SSC在线检测和品质评价分级结果, 应根据用户的实际需求进行模型选取和优化; 为此, 提出了糖度评价指数, 为进一步开发西瓜SSC在线检测设备提供了技术支撑。
近红外光谱 西瓜 可溶性固形物含量 在线检测 模型优化 Near infrared spectroscopy Watermelon Soluble solids content Online detection Model optimization 
光谱学与光谱分析
2023, 43(6): 1800
作者单位
摘要
1 京市农林科学院质量标准与检测技术研究所, 北京 100097农业农村部农产品质量安全风险评估实验室(北京), 北京 100097
2 京市农林科学院质量标准与检测技术研究所, 北京 100097
3 延安产品质量安全检验检测中心, 陕西 延安 716099
4 北京市农林科学院质量标准与检测技术研究所, 北京 100097农业农村部农产品质量安全风险评估实验室(北京), 北京 100097
以番茄可溶性固形物含量(SSC)的无损速测为例, 分别采用线性渐变分光(LVF)、 数字光处理(DLP)近红外光谱仪对大、 小番茄采集近红外光谱数据; 分别基于两种近红外光谱仪数据计算大、 小番茄平均光谱及差谱, 并比较两种近红外光谱仪所采集大、 小番茄近红外光谱数据的特征; 对两种近红外光谱仪的数据分别进行主成分分析(PCA), 并比较了大、 小番茄前3主成分的得分分布; 按SSC梯度对数据进行分级, 采用偏最小二乘(PLS)回归结合全交互验证算法分别基于两种近红外光谱仪数据建立番茄SSC定量校正模型。 结果表明: (1)大、 小番茄LVF近红外光谱的平均光谱及其差谱的光谱特征分别与DLP近红外光谱的平均光谱及其差谱的光谱特征相似。 (2)大、 小番茄LVF近红外光谱数据PCA前3主成分得分散点分离趋势不明显, 而DLP近红外光谱数据PCA前3主成分得分散点基本上不具有分离趋势。 (3)基于LVF近红外光谱数据所建各模型的相对预测性能(RPD)皆不低于2.11, 其中标准化预处理所建模型具有最佳性能, 模型维数(Nf)、 校正测定系数(R2C)、 校正均方根误差(RMSEC)、 交互验证测定系数(R2CV)、 交互验证均方根误差(RMSECV)、 RPD、 预测相关系数(RP)、 预测均方根误差(RMSEP)分别为8、 0.949 1、 0.27、 0.899 9、 0.38、 3.16、 0.882 6、 0.63; 基于DLP近红外光谱数据所建各模型的RPD皆不低于1.60, 其中标准化预处理所建模型具有最佳性能, Nf、 R2C、 RMSEC、 R2CV、 RMSECV、 RPD、 RP、 RMSEP分别为5、 0.823 5、 0.49、 0.728 6、 0.62、 1.94、 0.788 4、 0.80。 该研究可为番茄SSC的无损快速测定以及果蔬品质无损快速检测的仪器选择与评价提供一定的参考。
番茄 可溶性固形物含量 近红外光谱仪 定量模型 Tomato Soluble solid content Near-infrared spectrometer Quantitative models 
光谱学与光谱分析
2023, 43(5): 1351
作者单位
摘要
安徽农业大学信息与计算机学院, 安徽 合肥 230036
可溶性固形物含量(SSC)是决定鲜桃风味和品质的重要成分。 高光谱影像的特征提取为无损检测可溶性固形物含量提供了数据基础和方法路径。 先前的研究表明, 基于多光谱、 荧光谱、 近红外光谱、 电子鼻的水果内部品质评估取得较好的结果。 但是, 由于缺少多特征融合, 从而限制了水果品质的精准估测。 为此, 提出了一种基于堆栈自动编码器-粒子群优化支持向量回归(SAE-PSO-SVR)模型预测鲜桃可溶性固形物含量。 首先, 利用高光谱影像提取光谱信息、 空间信息及空-谱融合信息。 其次, 设置普适性堆栈自动编码器(SAE)提取光谱信息、 空间信息及空-谱融合信息的深层特征。 最后, 将深层特征作为粒子群优化支持向量回归(PSO-SVR)模型的输入数据进行鲜桃可溶性固形物含量的预测。 其中, 对于光谱信息作为输入的SAE模型, 设计了453-300-200-100-40, 453-350-250-150-50, 453-350-250-100-60的三个隐含层结构。 对于空间信息作为输入的SAE模型, 设计了894-700-500-300-50, 894-650-350-200-80, 894-800-700-500-100的三个隐含层结构。 对于融合信息作为输入的SAE模型, 设计了1347-800-400-200-40, 1347-750-550-400-100, 1347-700-500-360-150的三个隐含层结构。 实验结果表明, 对于输入数据分别为光谱信息、 空间信息及融合信息的SAE模型, 结构为453-300-200-100-40, 894-800-700-500-100和1347-750-550-400-100的模型效果较好, 而且基于融合信息的模型预测精度明显优于基于光谱信息或者图像信息的模型。 为了验证模型的普适性, 利用结构为1347-750-550-400-100的SAE模型提取融合信息的深层特征估测不同品种鲜桃的可溶性固形物含量并进行可视化。 结果表明, 基于结构为1237-650-310-130的SAE-PSO-SVR模型预测效果最好(R2=0.873 3, RMSE=0.645 1)。 因此, 所提出的SAE-PSO-SVR模型提高了鲜桃可溶性固形物含量的估计精度, 为鲜桃的其他成分检测提供了技术支撑。
可溶性固形物含量 高光谱影像 深层特征 支持向量回归 鲜桃 Solid content Hyperspectral image Deep feature Support vector regression Peach 
光谱学与光谱分析
2021, 41(11): 3559
尚静 1,2孟庆龙 1,2黄人帅 1,2张艳 2,*
作者单位
摘要
1 贵阳学院 食品与制药工程学院,贵州贵阳550005
2 贵阳学院 农产品无损检测工程研究中心,贵州贵阳550005
猕猴桃可溶性固形物含量(SSC)和硬度是评价其品质的关键参数,同时也是判别其成熟度的重要指标。为探究基于光纤光谱技术预测猕猴桃SSC、硬度和成熟度的可行性并寻求最佳预测模型。首先,采用光纤光谱(200~1 000 nm)采集系统获取不同成熟期“贵长”猕猴桃的反射光谱,并测定SSC和硬度的参考值。接着,基于全光谱和参考值构建偏最小二乘回归(PLSR)和主成分回归(PCR)预测模型。然后,应用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)选取特征波长,构建简化的多元线性回归(MLR)和误差反向传播(BP)网络预测模型。最后,通过偏最小二乘判别分析(PLS-DA)和简化的K近邻(SKNN)算法,构建预测猕猴桃成熟度检测模型。结果表明:CARS-BP模型对SSC的预测性能最优,其预测集决定系数RP2=0.90,预测集均方根误差(RMSEP)和剩余预测偏差(RPD)分别为0.64和3.22;CARS-MLR对硬度的预测性能相对最优,其RP2=0.83,RMSEP和RPD分别为1.67和2.47;PLS-DA模型对猕猴桃成熟度的检测性能最优,其正确识别率高达100%。该研究为水果品质和成熟度的无损检测提供重要指导。
光纤光谱 猕猴桃 可溶性固形物含量 硬度 成熟度 无损检测 optical fiber spectroscopy kiwifruit soluble solids content firmness maturity nondestructive detection 
光学 精密工程
2021, 29(5): 1190
作者单位
摘要
1 四川农业大学 机电学院, 四川 雅安 625014
2 四川农业大学 信息工程学院, 四川 雅安 625014
3 四川农业大学 农业信息工程四川省重点实验室, 四川 雅安 625014
可溶性固形物含量是判断苹果内部品质的重要参考属性之一。利用高光谱技术获取苹果感兴趣区域的反射光谱, 以S-G平滑(Savitzky-Golay smoothing)和直接正交信号校正(Direct orthogonal signal correction, DOSC)算法对光谱数据进行梯度预处理后, 用后向区间偏最小二乘法(Bipls)优选出3, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23等16个子区间, 共计177个波长。结合竞争自适应重加权采样算法(CARS)再作进一步筛选, 提取出449.6,512.9,544.8,547.2,594.3,596.8,928.2 nm等7个特征波长, 利用偏最小二乘算法(PLS)建立基于特征波长的可溶性固形物含量检测模型, 所得模型评价为Rc=0.906 2, RMSEC为0.482 2,Rp=0.871 6,RMSEP为0.614 0。该算法模型预测性能同Bipls和Bipls-SPA模型相比更为优异, 证明了Bipls结合CARS算法在提高苹果可溶性固体物含量检测精度方面的有效性。
可溶性固形物含量 后向区间偏最小二乘 竞争自适应重加权采样 偏最小二乘 soluble solid content backward interval partial least squares(Bipls) competitive adaptive reweighted sampling(CARS) partial least squares(PLS) 
发光学报
2019, 40(3): 389
作者单位
摘要
北京农业智能装备技术研究中心, 国家农业智能装备工程技术研究中心, 北京100097
从高光谱数据中选取能够有效进行内部品质检测的特征波长, 是利用高光谱成像技术进行水果品质定量分析的关键。 本文采用遗传算法(GA)、 连续投影算法(SPA)和GA-SPA算法分别从400~1 000 nm的苹果高光谱图像中提取特征波长, 利用偏最小二乘法(PLS)、 最小二乘支撑向量机(LS-SVM)和多元线性回归(MLR)建模进行苹果可溶性固形物含量(SSC)的定量分析并进行了综合比较。 160个样品中, 120个用于建模, 40个用于预测。 比较发现SPA-MLR模型获得了最好的结果, R2p, RMSEP和RPD分别为0.950 1, 0.308 7和4.476 6。 结果表明: SPA能够有效地用于高光谱数据的变量选择, 利用SPA-MLR可建立稳健的苹果SSC预测模型, 较少的有效变量和MLR模型的易解释性表明该模型在在线检测和便携式仪器开发中具有较大的应用潜力。
高光谱成像 苹果 可溶性固形物含量 变量选择 多元校正分析 Hyperspectral imaging Apple Soluble solids content Variable selection Multivariate calibration analysis 
光谱学与光谱分析
2013, 33(10): 2843
作者单位
摘要
1 中南林业科技大学, 湖南 长沙410004
2 湖南省食品测试分析中心, 湖南 长沙410025
提出了一种利用近红外光谱技术定量分析蜂蜜中可溶性固形物含量(SSC)的新方法, 同时对蜂蜜中的水分也进行了研究。 在不同光谱范围内, 通过对原始光谱的不同预处理, 用偏最小二乘法分别建立了SSC和水分的近红外透反射光谱校正模型, 所有模型都有高的的预测精度和水分的最优模型都为在全谱范围内, 光谱预处理采用Norris平滑+一阶微分+多元信号校正, SSC模型的交互验证决定系数(R2CV)、 交互验证误差均方根(RMSECV)、 验证集决定系数(R2p)、 验证误差均方根(RMSEP)SSC模型分别为0.998 6, 0.190, 0.998 5和0.127, 水分模型分别为0.998 4, 0.187, 0.998 6和0.125。 近红外光谱能实现蜂蜜中SSC和水分的准确测定。 水分模型预测结果略好于相关文献的报道
近红外透反射光谱 蜂蜜检测 可溶性固形物含量 水分 Near infrared transflective spectroscopy Honey analysis Soluble solids content Moisture 
光谱学与光谱分析
2010, 30(9): 2377

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!