作者单位
摘要
1 长春理工大学高功率半导体激光国家重点实验室,吉林 长春 130022
2 长春理工大学中山研究院,广东 中山 528437
3 深圳市杰普特光电股份有限公司,广东 深圳 518110
针对传统高功率光纤激光器焊接不稳定、飞溅量大、难以实现精密焊接的问题,设计了一种光斑可调的信号合束器,首次以50 μm/70 μm/600 μm/620 μm/660 μm大芯径环形双芯光纤作为输出光纤,基于光束非相干合成技术,通过RSoft软件对合束器进行了模拟仿真,分析了其模场变化情况,设计的合束器满足绝热拉锥以及亮度守恒两个原则,调控拉锥比(TR)使其可以实现中心和外环独立工作。采用套管法将7根25 μm/250 μm光纤耦合到一起形成熔锥光纤束,再将其与输出光纤进行熔接,制成了高功率大芯径环形光斑可调信号合束器。此光纤合束器的传输效率≥98%,中心光束质量因子(M2)仅为1.76,此时中心端口输出功率为3.036 kW。而后对合束器进行了耐环境测试,合束器在低温与高温下表现出的传输特性良好。将该光斑可调的环形光斑信号合束器应用到激光器中,通过调节中心和外环激光功率,可以在任何温度环境下实现超高速焊接,为激光复合焊接提供了一种新途径。
激光器 光纤合束器 熔锥光纤束(TFB) 传输效率 光束质量 环境可靠性 
中国激光
2024, 51(8): 0801004
王嘉伟 1李智贤 1,2,3付敏 1田鑫 1[ ... ]王泽锋 1,2,3
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 国防科技大学高能激光技术湖南省重点实验室,湖南 长沙 410073
研制了一款输入输出均为50 μm大芯径信号光纤的高泵浦光耦合效率、高光束质量保持的(6+1)×1反向泵浦/信号合束器。利用仿真软件分析了锥区长度、拉锥比例以及玻璃管折射率对泵浦光耦合效率的影响,纤芯轴向偏移量对信号光传输效率及光束质量的影响。合束器的制作中,使用半掺氟的薄壁玻璃管提高泵浦臂性能,泵浦耦合效率大于98.5%,无主动制冷情况下温升小于10 ℃/kW。采用包层腐蚀变径技术保证信号光纤在组束过程中纤芯不变形,并通过光束质量因子反馈对准熔接,实现了高光束质量保持的合束器的研制,光束质量退化比仅为3.4%。在合束器信号光纤尾端制作包层光滤除器并熔接端帽构成一体化器件,应用于单级主振荡功率放大结构的窄线宽激光系统中,实现了4.1 kW近单模输出,拉曼抑制比为40.5 dB。
泵浦/信号合束器 高功率光纤激光 光束质量 
中国激光
2024, 51(6): 0601007
何春江 1,2肖旭升 1,**许彦涛 1肖扬 1,2[ ... ]郭海涛 1,*
作者单位
摘要
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 中国科学院大学,北京 100049
硫化物光纤合束器可以实现对多个中红外光源(2~5 μm)的功率组合和光谱扩展,基于自研As2S3多模光纤,使用低温熔融拉锥技术制备得到7×1中红外光纤合束器,分析了拉锥区域的损耗产生机理,并表征和评估了合束器的传输效率和光束质量。实现了输入光纤合束端与输出光纤的高质量熔接(熔接点损耗低至0.45 dB,抗拉张力超过300 g),合束器平均传输效率约为80%,单通道最高输出功率为4.32 W,表现出了优良的传输特性和功率承载能力。
光纤合束器 硫化物光纤 中红外波段 传输效率 光束质量 Fiber combiner Sulfide fiber Mid-infrared band Transmission efficiency Beam quality 
光子学报
2023, 52(11): 1106003
黄梓轩 1王虎 1祁思胜 2顾晓南 1[ ... ]杨志勇 1,2,**
作者单位
摘要
1 江苏师范大学物理与电子工程学院江苏省先进激光材料与器件重点实验室,江苏 徐州 221116
2 中国科学院上海光学精密机械研究所中国科学院强激光材料重点实验室,上海 201800
3 光电信息控制和安全技术重点实验室,天津 300308
中红外光纤合束器可将多个低功率的中红外激光器进行合束,从而实现较高的功率输出。本工作研制了一种7×1硫系玻璃光纤合束器(未熔接输出光纤),评估了其中红外传输特性。该光纤合束器由As40S60/As38S62光纤组束熔融拉锥而成,初始光纤的纤芯直径和包层直径分别为200 μm和250 μm,数值孔径为0.38~0.35(@2~6 μm),拉锥比例R为3和4,锥形过渡区长度为2 cm。测试结果表明:当R=3时,制备的光纤合束器在3 μm和4.6 μm波长的端口传输效率分别为>90%和>87%;当R=4时,制备的光纤合束器在3 μm和4.6 μm波长的端口传输效率分别为>88%和>85%;光纤合束器输出端的光纤单丝之间未发生明显串扰。
材料 硫系玻璃光纤 光纤合束器 中红外 端口传输效率 
光学学报
2023, 43(23): 2306003
作者单位
摘要
长春理工大学高功率半导体激光国家重点实验室,吉林 长春 130022
为了提高半导体激光器作为光纤激光器、固体激光器泵浦源的亮度,基于光束准直、空间光束合成、偏振光合成、光纤耦合等技术,提出了一种紧凑的光束整形系统来均衡半导体激光器快慢轴的光束质量,采用类似阶梯型棱镜和两个30°的直角棱镜填充快轴方向暗区,并用偏振合束器对慢轴光束宽度进行压缩的光束整形方案,设计出了一种紧凑的高亮度光纤耦合系统。该系统由8个mini-bar组成的半导体激光器叠阵耦合进芯径为100 μm、数值孔径为0.22的光纤中,其输出功率为272.4 W,光光转换效率为85.1%,亮度高达22.832 MW/(cm2·sr)。
光学设计与制造 泵浦亮度 光束准直 光纤耦合 阶梯型棱镜 偏振合束器 光束整形 
激光与光电子学进展
2023, 60(15): 1522002
朱晰然 1,2,3张斌 1,2,3,*陈子伦 1,2,3赵得胜 1,2,3[ ... ]侯静 1,2,3
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学 南湖之光实验室,湖南 长沙 410073
3 国防科技大学 高能激光技术湖南省重点实验室,湖南 长沙 410073
中红外超荧光光源具有光谱范围宽、空间相干性好、时域稳定性高等特点,应用前景广泛,但受限于中红外侧面泵浦合束器,目前普遍利用空间结构泵浦产生。文中根据拉锥光纤侧面耦合的原理,在125 μm包层直径的无源双包层氟化物光纤上实现了中红外光纤侧面泵浦合束器的研制,该合束器泵浦光耦合效率达82.3%,可承受的最大泵浦功率达87.5 W。通过在中红外增益光纤上制得侧面泵浦合束器,实现了全光纤中红外超荧光光源产生,前后向输出的中红外超荧光最高功率和为91.09 mW (后向输出53.67 mW,前向输出37.42 mW),输出光谱范围从2702 nm覆盖至2830 nm。在中红外超荧光总输出功率为33.03 mW时,获得了108 nm的最宽20 dB带宽。文中实现的中红外全光纤超荧光光源克服了以往空间泵浦复杂度高、调节难的问题,对推动中红外超荧光光源的进一步功率放大具有重要意义。
中红外光纤光源 超荧光光源 侧面泵浦合束器 氟化物光纤 mid-infrared fiber source superfluorescent fiber source side-pumping combiner fluoride fiber 
红外与激光工程
2023, 52(5): 20230101
付敏 1李智贤 1王泽锋 1,2,3陈子伦 1,2,3,*
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 高能激光技术湖南省重点实验室,湖南 长沙 410073
3 大功率光纤激光湖南省协同创新中心,湖南 长沙 410073
在基于光纤功率合束器的高功率合成方案中,合成后激光保持好的光束质量是当前激光领域亟待解决的问题之一。实现了一种高光束质量光纤功率合束器的研制。首先,利用仿真软件建立3×1光纤功率合束器模型,对影响功率合束器光束质量和传输效率的因素进行了仿真,得到了制作合束器最佳参数的理论值;其次,基于光纤包层腐蚀技术,根据仿真结果利用熔融拉锥光纤束技术研制了一种输出光纤为50/400 μm (NA=0.12)的高光束质量3×1光纤功率合束器;最后,利用三台3 kW的光纤激光器对其进行了测试,在总输入功率为8.95 kW的情况下,合束后输出功率为8.62 kW,整体传输效率大于96%,光束质量M2=4.035。
功率合束器 光纤激光器 拉锥熔融 光束质量 fiber signal combiner fiber laser taper-fused beam quality 
红外与激光工程
2022, 51(5): 20210354
作者单位
摘要
1 天津大学精密仪器与光电子工程学院,天津 300072
2 珠海光库科技股份有限公司,广东 珠海 519080
通过对光纤信号合束器的锥区与输出光纤进行特殊处理,并对输出光纤进行扭转处理,实现平顶光输出。测试结果表明,20/130 μm(纤芯直径为20 μm,包层直径为130 μm)光纤输入、100/120/360 μm(纤芯直径为100 μm,包层直径为360 μm,纤芯和包层之间低折射率层的直径为120 μm)光纤或者200/220/360 μm光纤输出的4×1信号合束器的光束强度分布都不是平顶分布,强度分布较为分散。对输出光纤进行扭转处理后,更多的光纤模式将被激发。在锥区与输出光纤之间过渡一段200/220/360 μm光纤,所得的4×1信号合束器在光束束腰4.88 mm内的强度分布均匀,呈现平顶分布。通过计算可知,该范围内的光束平坦度在0.1以下,并且该光纤信号合束器可以承受的信号功率在2 kW以上。
光纤光学 光纤激光 平顶光 全光纤 信号合束器 
激光与光电子学进展
2021, 58(11): 1106005
方泽远 1,2尹路 2,3闫明鉴 2韩志刚 2[ ... ]朱日宏 2,3
作者单位
摘要
1 上海机电工程研究所,上海 201109
2 南京理工大学 先进固体激光工信部重点实验室,江苏 南京 210094
3 南京理工大学 电子工程与光电技术学院,江苏 南京 210094
在高功率光纤激光器反向泵浦信号合束器的制作过程中,经熔融拉锥后输出端的信号光纤纤芯变细,在与输入端信号光纤熔接时产生模场失配问题,造成反向泵浦信号合束器的信号光传输效率降低。针对这一问题,文中搭建了信号光纤熔接的芯径失配功率损耗模型,简析了光纤熔接时芯径失配与信号光功率损耗的关系。设计了一套泵浦信号反向合束器信号光功率损耗测试系统。提出了一种通过优化反向合束器信号光纤参数,提升反向泵浦信号合束器的信号光功率传输效率的方法,并通过预拉锥工艺,制作出一支25/400 (6+1)×1反向合束器,经测试,信号光传输效率优于98%,实验室使用该反向合束器搭建了一台MOPA结构光纤激光放大器,实现了3 kW稳定输出。
backward pump-signal combiner (BPSC) core diameter mismatch signal light transmission efficiency light intensity distribution 反向泵浦信号合束器(BPSC) 芯径失配 信号光传输效率 光强分布 
红外与激光工程
2020, 49(10): 20200014
作者单位
摘要
合肥工业大学光电技术研究院, 安徽 合肥 230009
以波长分别为633 nm和1319 nm的激光为例研究了激光耦合共焦系统。 为满足两种波长的激光合束聚焦后的会聚角小于10°的设计要求, 提出了两种解决思路:一是用反射镜和二向色镜 使双波长激光实现共光路,然后经离轴抛物面反射实现共焦;二是用透镜组耦合的方法把双波长激光分别耦合进二 合一合束器,合束器采用单模光纤,其芯径为9 μm, 数值孔径(NA)为0.14, 根据光纤和激光器参数设计耦合透镜组。 综合考虑采用第二种方法进行实验,给出实验方法及测量结果,并计算出两种波长激光各自的耦合效率。实验结果 表明:光纤耦合器耦合法能实现双波长激光合束,并且耦合效率较高,输入波长为633 nm、1319 nm时系统的耦合效率分别大于40%、30%, 实验结果满足设计要求,达到了预期效果。
激光技术 双波长激光耦合共焦 透镜耦合法 耦合效率 合束器 laser technology dual-wavelength laser coupled confocal lens coupling method coupling efficiency fiber combiner 
量子电子学报
2019, 36(5): 556

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!