作者单位
摘要
1 南开大学,弱光非线性光子学教育部重点实验室
2 南开大学,天津,300457
3 南开大学,物理科学学院,天津,300071
对基于多周期极化掺镁铌酸锂晶体(PPMgLN) 的信号光单谐振准相位匹配光学参量振荡器(QPM-OPO)进行了实验研究.以输出波长为1.064靘的声光调Q Nd:YAG固体激光器作为基频泵浦源对周期为29~31.5靘的多周期掺镁(5mol%)铌酸锂极化光栅进行了光学参量振荡温度、周期调谐实验,光参量振荡阈值功率仅为45mW(重复频率1kHz).通过温度调谐(20~180℃)与周期调谐(29.0~31.0靘)相结合,实现了调谐范围为1445~1685nm的信号光稳定输出.
非线性光学 光参量振荡器 周期极化掺镁铌酸锂晶体 准相位匹配 
红外与毫米波学报
2008, 27(2): 105
作者单位
摘要
中国科学院安徽光学精密机械研究所激光技术研究中心, 安徽 合肥 230031
以掺镱光纤激光器为抽运源、掺铒光纤激光器后接掺铒光纤放大器为信号源,利用周期极化掺镁铌酸锂晶体,研究了全光纤化差频产生中红外激光器的转换效率特性。结果表明,抽运光和信号光偏振态影响差频产生过程的转换效率,利用偏振控制器,可将抽运光和信号光偏振方向调节到与晶体光轴方向平行,以获得高的转换效率。抽运光和信号光的光束质量既影响差频产生过程的转换效率,又决定晶体纵向位置的容限,当聚焦系统由自聚焦透镜和焦距100 mm平凸透镜组成时,相对转换效率达0.717 mW-2,晶体纵向位置容限为44 mm。此外,差频光在3126.36~3529.6 nm范围内调谐时,转换效率基本保持不变。
非线性光学 差频产生 周期极化掺镁铌酸锂晶体 转换效率 光纤激光器 光纤放大器 
光学学报
2008, 28(2): 295
作者单位
摘要
南开大学 泰达应用物理学院,天津 300457
为了获得1.5μm波段可调谐红外光输出,采用短脉冲电场极化法,在1mm厚的掺镁(摩尔分数为0.05)铌酸锂晶体上成功制备了周期为29μm的极化光栅。利用声光调Q Nd∶YVO4固体激光器直接抽运PPMgLN晶体,开展了OPG光学转换研究工作。在输入3W的抽运光时,得到信号光输出功率为44mW,转换效率1.5%。并通过调谐晶体温度(45℃~160℃),获得了调谐范围1.4538μm~1.4750μm的信号光输出。实现了可调谐红外光的输出,验证了晶体周期结构的均匀性。
激光技术 光参变产生 周期极化掺镁铌酸锂晶体 准相位匹配 laser technique optical parametric generation(OPG) periodically poled MgO∶LiNbO3 crystal( quasi-phase match 
激光技术
2007, 31(2): 0120
作者单位
摘要
中国科学院安徽光学精密机械研究所激光技术研究中心, 合肥 230031
报道一种新型光纤化宽带可调连续波中红外激光器系统,该激光系统采用准相位匹配(QPM)的差频产生(DFG)技术,非线性晶体为多周期的周期性极化掺镁铌酸锂晶体(PPMgLN),掺镱光纤激光器(YDFL)用作抽运光源,可调激光器经掺铒光纤放大器(EDFA)功率提升后作为信号光源。利用建立的准相位匹配差频产生系统,获得了连续波中红外差频光输出;实验发现,温度导致相位失谐的半峰全宽(FWHM)为4.5 ℃;通过优化选择晶体周期,并结合调节信号光波长和控制温度,该准相位匹配差频产生系统可在3.1~3.6 μm内连续调谐。
非线性光学 差频发生 准相位匹配 周期极化掺镁铌酸锂晶体 光纤激光器 光纤放大器 
光学学报
2007, 27(10): 1807
作者单位
摘要
南开大学弱光非线性光子学材料先进技术及制备教育部重点实验室, 天津市信息光子材料与技术重点实验室, 南开大学泰达应用物理学院, 天津 300457
采用短脉冲极化电场法, 在1 mm厚的掺摩尔分数0.05镁的铌酸锂晶体上成功制备了周期为30 μm的极化光栅。以输出波长为1.064 μm的声光调Q Nd:YAG固体激光器作为基频抽运源对其进行了光学参量振荡实验, 光参量振荡阈值功率为45 mW(重复频率为1 kHz), 在输入功率为490 mW, 控温炉温度为160 ℃时, 获得了94 mW的波长为1544 nm的信号光输出, 转换效率达到19.2%。并且通过调谐晶体温度(20~180 ℃), 获得了调谐范围为1503~1550 nm的信号光稳定输出。实现了可调谐红外光的稳定输出, 验证了晶体周期结构的均匀性。
非线性光学 光学参量振荡器 周期极化掺镁铌酸锂晶体 温度调谐 准相位匹配 
中国激光
2007, 34(2): 209

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!