作者单位
摘要
1 安徽理工大学材料科学与工程学院, 安徽 淮南 232001
2 哈尔滨工业大学化工与化学学院, 黑龙江 哈尔滨 150001
工业染料的大规模生产和广泛应用给地球生态带来了相当大的影响, 对水环境污染非常严重, 而传统色谱和光谱工具难以检测到微弱的光谱和化学信息, 因此开发便携快速的检测技术至关重要。 表面增强拉曼光谱(SERS)是一种与纳米技术相结合的新型分析技术, 可以实现单分子量级化学物质的检测, 但潜力容易受到SERS 基底的增强能力、 稳定性等普适性问题限制。 研究提出了一种简单而通用的策略, 制备了一种基于疏水性有机半导体双(二氰基亚甲基)-封端-二噻吩并[2,3-d; 2’,3’-d]苯并[2,1-b; 3,4-b’]-二噻吩(4CN-DTmBDT)薄膜为衬底的新型SERS复合基底。 首先通过旋涂法制备有机半导体衬底, 该π共轭有机半导体具有分子结构可控、 生物相容性、 光电特性可微调、 成膜形态参数可控等优势, 衬底表面具有疏水性使纳米银粒子(AgNPs)在其表面形成紧密咖啡环, 制备有机半导体-纳米银SERS复合基底, 探究基底拉曼信号的增强效果。 同时提出了一种该有机半导体与纳米银粒子的协同增强机制, 并对增强能力与增强机理进行了相关研究。 结果表明, 紧密咖啡环的形成减小了银纳米颗粒之间的空间, 检测时通过浓缩分析物, 从而增强了热点效应。 对以有机染料为探针分子罗丹明6G(R6G)的检测限低至1×10-8 mol·L-1, SERS增强因子(EF)达1.30×106, 对于疏水性更优异的PDMS与纳米银粒子复合基底检测限为1×10-5 mol·L-1, 说明单独的纳米银粒子对R6G探针信号增强能力有限, 同时证明研究采用的有机半导体与银纳米粒子之间通过协同效应进一步显著提升基底拉曼信号, 而且灵敏度高、 重复性好。 该SERS复合基底对1×10-4和1×10-8 mol·L-1 R6G染料检测的相对标准偏差(RSD)分别为8.3%和4.7%。 实验表明该有机半导体-纳米银复合基底在废水中染料痕量分析领域具有良好的应用潜力。
表面增强拉曼光谱 有机半导体-纳米银复合基底 咖啡环 协同增强机制 有机染料 Surface enhanced Raman spectroscopy Organic semiconductor-nano silver composite substr Coffee ring Cooperative enhancement mechanism Organic dye 
光谱学与光谱分析
2023, 43(7): 2158
作者单位
摘要
西安工业大学材料与化工学院, 陕西 西安 710021
表面增强拉曼散射(SERS)技术具有高灵敏度、 高分辨率、 无损检测及不需要预处理等优点, 已成为一种可以实现定性定量分子检测的有力工具, 使目标分析物信号放大的痕量检测技术, 甚至能够在分子水平上提供丰富的结构信息。 虽然SERS增强机理一直存在争议, 但目前被广泛接受的增强机理包括物理增强(电磁场增强)和化学增强(主要为电荷转移的贡献)。 随着近年来金属、 非金属等诸多材料应用于SERS领域, 诸多学者对于影响SERS基底的增强因素产生广泛兴趣, 对于SERS增强机理的研究具有重要意义。 综述中主要从SERS电磁增强机理、 化学增强机理及两者的协同机理三个方面对SERS增强机理进行阐述, 分析哪些因素影响基底增强效应, 为SERS增强机理的分析提供一些参考。 同时提出不同基底结构在增强机理分析过程中面临的问题: (1)在电磁增强机理中, 单一贵金属基底因其“热点”分布不均匀、 不可控因素导致SERS灵敏度和重复性差等因素, 对SERS电磁增强机理影响效果较大; (2)在化学增强机理中, 单一半导体材料由于价格实惠、 材料性能较稳定、 表面易于改性等优点被广泛应用于SERS基底、 由于增强能力较低等因素、 对SERS化学增强效果不明显; (3)SERS基底不再局限于单一的金属或者非金属材料, 更多是金属-非金属两者的结合, 既能够弥补贵金属的缺点, 也能利用非金属的优点, 通过电磁增强机理和化学增强机理的协同作用有效提高SERS增强能力。 对于SERS增强机理的分析, 有助于制备均一性强、 重复性高的SERS基底, 为SERS基底的制备提供参考。
表面增强拉曼散射 电磁场增强机理 化学增强机理 SERS基底 Surface Enhanced Raman Scattering (SERS) Electromagnetic enhancement mechanism Chemical enhancement mechanism SERS substrate 
光谱学与光谱分析
2023, 43(5): 1340
作者单位
摘要
1 南京邮电大学 集成电路科学与工程学院, 南京 210023
2 南京邮电大学 射频集成与微组装技术国家地方联合工程实验室, 南京 210023
应用日益广泛的可穿戴设备要求其中的传感器件可拉伸、可弯曲,因此柔性传感器已受到人们的重视。文章对柔性压力传感器的微结构、材料、制备工艺等方面进行了综述,重点总结了现阶段柔性传感器所采用的各种结构,比较了天然微结构、仿生表面微结构、多孔结构、多级结构、多层结构柔性压力传感器的重要性能。介绍了目前常用的柔性基底材料和导电活性材料,对比了光刻技术、3D打印等制造工艺的优缺点,对柔性压力传感器的未来研究方向进行了展望。文章对相关柔性器件的研究具有较高的理论价值和工程参考意义。
柔性压力传感器 微结构 柔性基底材料 3D打印 flexible pressure sensor microstructure flexible substrate material 3D printing 
微电子学
2023, 53(2): 295
万垂铭 1,2曾照明 2肖国伟 2蓝义安 2[ ... ]王洪 1,3,*
作者单位
摘要
1 华南理工大学 电子与信息学院,广东 广州 510640
2 广东晶科电子股份有限公司,广东 广州 511458
3 中山市华南理工大学现代产业技术研究院,广东 中山 528437
深紫外LED可通过物理方式破坏病毒和细菌的结构,从而获得高效消毒的效果。相比于工艺成熟的蓝光LED,如何提高深紫外LED的封装可靠性和出光率仍是关键问题。本文采用基底预热方式微固化封装胶,结合阵列点胶方式将石英玻璃固定在镀铜围坝,制备了半无机封装的深紫外LED。该器件的输出波长为275 nm,半峰宽约为11 nm。对比传统类透明材料封装的器件,石英封装的深紫外LED有更高的出光率。在真空红墨水和氦气漏率实验中,采用本文提出的半无机封装技术的深紫外LED器件表现出高密封性。此外,在加速老化测试中,该封装器件的光衰速率在20%以内。实验结果表明,对比有机封装的深紫外LED器件,在基底预热条件下,采用阵列点胶固定石英玻璃是现阶段提高深紫外LED可靠性的一种封装方法。
深紫外LED 可靠性 出光率 基底预热 阵列点胶 DUV-LEDs reliability light output efficiency substrate preheating array dispensing 
发光学报
2023, 44(10): 1842
刘泽 1冷青松 2唐琳 1王健 3[ ... ]孙付春 2,**
作者单位
摘要
1 成都大学 电子信息与电气工程学院成都 610106
2 成都大学 机械工程学院成都 610106
3 上海船用柴油机研究所 低温工程部上海 201203
4 中核四〇四有限公司嘉峪关 735100
第一壁系统中热应力的大小是决定聚变堆安全运行的关键因素之一。本文通过Ansys Workbench有限元软件,对具有粗糙基底的W/316L不锈钢系统中的热应力分布,以及影响热应力大小的诸如温度、涂层厚度、基底厚度等因素进行了深入分析。同时从系统中交界面剪切应力入手,研究了粗糙基底对涂层结合强度的影响。结果表明:粗糙基底系统中热应力随着温度、基底厚度的增加而增加,随着涂层厚度的增加而降低。除此之外,粗糙基底提升了系统中热应力的极值,在一定程度上提高了涂层与基底的结合强度。研究结果为后期高结合强度第一壁涂层系统的研发提供了一定的参考价值。
W/316L不锈钢第一壁系统 粗糙基底 热应力 W/316L stainless steel first wall system Rough substrate Thermal stress 
核技术
2023, 46(10): 100604
作者单位
摘要
陕西科技大学机电工程学院, 陕西 西安 710021
表面张力自组装技术的一个重要前提就是利用润湿性分区结构将液滴限制在目标区域。提出一种采用微秒脉冲激光在复合基底表面上制造润湿性分区结构的方法。该方法可通过改变激光加工参数控制复合基底表面超疏水涂层的去除面积占比, 进而调控加工区域的润湿性。建立去除面积占比的数学模型和仿真模型, 研究加工参数对去除面积占比以及润湿性的影响。结果表明, 加工区域的去除面积占比与加工速度和扫描线间距成反比。采用不同的加工参数制备了不同的润湿性分区结构并测量了其接触角。试验结果表明, 随着加工速度从100 mm/s提高到9 000 mm/s, 扫描线间距从20 μm增加到150 μm, 加工区域的去除面积占比减小, 接触角从5°以下逐步增大到127°; 随着基底表面与激光焦平面之间距离的绝对值从0增加至3 mm, 加工区域的接触角从5°以下增大到170°以上。进行了微芯片自组装试验, 结果表明, 利用该方法制备的润湿性分区结构可实现液滴限制和微芯片自组装。研究结果为制造润湿性可控的自组装基底提供了新思路。
激光加工 复合基底 润湿性调控 自组装 laser fabrication composite substrates wettability control self-assembly 
应用激光
2023, 43(4): 61
作者单位
摘要
重庆大学光电技术及系统教育部重点实验室,重庆 400044
利用自组装技术将单层银纳米粒子修饰到Whatman No.1滤纸表面,成功制备了柔性表面增强拉曼散射(SERS)基底。实验结果表明:当银粒子尺寸为20 nm时,拉曼增强性能达到最佳。采用此参数制备的SERS基底对罗丹明6G(R6G)分子的检测极限为10-10 mol/L,最大增强因子为5.66×108,相对标准偏差(RSD)为10.9%。同时,该柔性基底能够准确地识别和区分多种目标分子,并具有良好的柔软性和可恢复性。此外,还结合基底的扫描电子显微镜(SEM)表征情况,利用时域有限差分(FDTD)仿真软件对样品的电磁场增强特性进行了数值分析,并对其与实验结果进行了对比。
自组装 银纳米粒子 柔性基底 表面增强拉曼散射 
光学学报
2023, 43(21): 2124003
吴春芳 1,*张焱 1潘浩 1朱业传 1[ ... ]魏杰 3
作者单位
摘要
1 西安工业大学光电工程学院,陕西 西安 710021
2 中国大唐集团科学技术研究总院有限公司西北电力试验研究院,陕西 西安 710018
3 西安交通大学电子科学与工程学院,陕西 西安 710049
表面等离子激元(SPP)和局域表面等离子共振(LSPR)耦合产生的电场增强显著高于单纯LSPR引起的电场增强。因此一种新型高效的表面增强拉曼散射(SERS)基底是寄希望于在一种复合基底中实现SPP-LSPR耦合获得的。基于SPP-LSPR耦合机理,提出一种针对633 nm激光使用的金光栅/金纳米颗粒SERS基底的设计思路以及光栅和纳米颗粒的具体结构参数。为了验证设计方法的正确性,利用电子束光刻法和化学合成法分别制备了具有相应几何尺寸特征的金光栅和金纳米颗粒,并将它们复合在一起得到了光栅/纳米颗粒SPP-LSPR耦合型复合SERS基底,这个基底相比仅有金纳米颗粒制备的LSPR型SERS基底,在检测R6G溶液时浓度可以降低2个数量级,增强因子是后者的72倍,实验结果和时域有限差分(FDTD)法理论拟合的结果基本一致。
表面增强拉曼散射基底 时域有限差分法 光栅 纳米颗粒 
光学学报
2023, 43(21): 2124001
作者单位
摘要
昆明理工大学机电工程学院,昆明 650500
硫系玻璃是一类优秀的红外光学镜片材料,但其热膨胀系数较大,与Si、Ge等红外光学材料相比,硫系玻璃镜片在镀膜过程中产生的残余应力较大,镀膜后面形变化较大。研究膜层中应力并优化应力的控制方法,可以提高薄膜的力学性能。本文通过测量在As40Se60硫系玻璃上镀膜前后基底的变化量来研究基底上不同材料膜层的残余应力情况,同时使用ANSYS软件对As40Se60/ZnS/Ge/ZnS/Ge/ZnS/YbF3/ZnS红外光学镜片膜系结构的热应力进行理论计算与仿真,验证了模型的合理性。分析了膜系结构中热应力在轴向与径向分布情况,结果显示:轴向热应力主要集中在膜层部分,表面膜层的热应力最大;径向热应力呈均匀分布,在边缘发生突降。分析了最外层保护膜的热应力与沉积温度、相邻膜层、不相邻膜层和基底的关系,结果表明:沉积温度在110 ℃到200 ℃的范围内,保护膜的热应力与沉积温度成正比;相邻膜层和不相邻膜层的厚度和材料均不影响保护膜的热应力;基底的厚度会对保护膜的热应力产生影响。
硫系玻璃基底 膜层制备 残余应力 热应力 有限元分析 chalcogenide glass substrate As40Se60 As40Se60 film preparation residual stress thermal stress finite element analysis 
人工晶体学报
2023, 52(8): 1540
作者单位
摘要
昆明理工大学机电工程学院,云南 昆明 650500
针对As40Se60硫系基底膜层脱膜的问题进行探究,本文利用分子动力学仿真软件建立了以ZnS、ZnSe和Ge三种材料为连接层、As2Se3为基底的仿真模型,分析了仿真模型真空退火后的结构势能、总能量和吸附能的变化。同时通过镀膜实验制备了相同膜厚的ZnS、ZnSe和Ge三类单层膜,并对制备的薄膜进行了附着力测试。仿真与实验结果均显示,ZnS薄膜易发生脱落,而Ge膜和ZnSe膜不易发生脱落,对于容易发生脱膜的ZnS膜,减小膜厚和基底镀膜温度,能够提高ZnS膜与基底的附着力。
材料 硫系基底 分子动力学 吸附能 附着力 
激光与光电子学进展
2023, 60(17): 1716002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!