作者单位
摘要
1 常州工学院计算机信息工程学院, 江苏 常州 213000
2 大庆师范学院机电工程学院, 黑龙江 大庆 163000
3 哈尔滨工程大学信息与通信工程学院, 哈尔滨 150000
异常目标检测是当前高光谱图像处理中的一个研究热点。针对当前异常目标检测算法存在的问题, 从解决高光谱图像中含有的背景、异常目标和噪声等相关量出发, 利用高光谱图像的空间谱和光谱特性, 提出了联合低秩张量分解和稀疏表示的新的高光谱图像异常目标检测算法。该算法首先利用低秩张量分解模型对高光谱进行图像恢复, 使图像质量得到提升, 从而使得异常目标变得突出, 易于进行目标检测; 然后, 再利用稀疏差异指数进行异常目标检测, 得到需要的异常检测结果; 最后, 利用真实的高光谱图像进行仿真实验, 结果表明, 新的异常目标检测算法具有检测精度高、虚警率低和鲁棒性好的特点。
高光谱图像 异常目标检测 张量分解 稀疏表示 hyperspectral imagery anomaly target detection tensor decomposition sparse representation 
电光与控制
2023, 30(1): 57
作者单位
摘要
1 大庆师范学院 机电工程学院, 黑龙江 大庆 163712
2 大庆师范学院 计算机科学与信息技术学院, 黑龙江 大庆 163712
经典的RX异常检测算子假设背景数据信息符合高斯分布, 但是由于高光谱图像混有大量的加性噪声, 使得图像产生退化, 背景信息并不完全符合这类分布。针对这一问题, 提出了基于低秩张量分解的高光谱图像RX异常目标检测算法。该方法首先利用高光谱图像的张量数据结构和低秩数据特性, 引入低秩张量分解方法对高光谱图像进行数据恢复, 使得异常目标信息相比于复杂背景信息变得突出; 再利用RX异常检测算子对恢复之后的高光谱图像进行异常目标检测; 最后得到异常目标检测结果。通过仿真实验对比, 提出的新的异常目标检测方法具有检测精度高、虚警率低和鲁棒性好的特点。
高光谱图像 异常目标检测 低秩张量分解 RX异常检测算子 hyperspectral imagery anomaly target detection low-rank tensor decomposition RX anomaly detection operator 
光学技术
2022, 48(3): 379
作者单位
摘要
江西理工大学电气工程与自动化学院, 江西 赣州 341000
为了抑制高光谱图像(HSI)混合像元和噪声在复杂背景中对异常目标检测的干扰,充分提取和利用HSI的光谱特征和空间特征,提出了一种基于端元提取和低秩稀疏矩阵分解的HSI异常目标检测算法。首先,对原始HSI进行最优分数阶傅里叶变换。然后,采用连续最大角凸锥算法对变换后的HSI进行端元提取,得到端元和相应的丰度矩阵,并通过行约束的低秩稀疏矩阵分解方法将丰度矩阵分解为具有低秩特性的背景分量和具有稀疏特性的异常分量。最后,构建背景协方差矩阵,通过马氏距离检测异常目标。实验结果表明,本算法在HSI异常目标检测中具有很好的检测性能。
遥感 高光谱图像 连续最大角凸锥 最优分数阶傅里叶变换 低秩稀疏矩阵分解 异常目标检测 
激光与光电子学进展
2021, 58(22): 2228003
作者单位
摘要
1 火箭军工程大学 作战保障学院, 西安70025
2 中国科学院西安光学精密机械研究所,西安710119
3 西安石油大学 计算机学院, 西安710065
为进一步提高高光谱异常目标检测的速度与精度,提出一种基于扩展多属性剖面和改进的Reed-Xiaoli算法相结合的快速异常目标检测方法。通过数学形态学变换从高光谱图像中提取扩展多属性剖面,同时提出一种快速局部Reed-Xiaoli算法,利用矩阵求逆引理迭代更新协方差矩阵的逆,从而降低马氏距离的计算复杂度。将扩展多属性剖面与快速局部Reed-Xiaoli算法相结合,充分利用高光谱图像的光谱信息和空间信息,有效提高探测速度与精度。在3个不同的数据集上与其他经典异常目标检测方法进行比较,实验结果表明,所提算法AUC值分别为0.996 7、0.985 6、0.981 6,运算时间分别为21.218 1 s、15.192 8 s、32.337 9 s。该方法在检测精度和速度上都有明显的优势,具有良好的实用价值。
高光谱图像 异常目标检测 快速局部RX 扩展多属性剖面 Reed-Xiaoli 矩阵求逆引理 Hyperspectral image Anomaly detection Fast local RX Extended multi-attribute profiles Reed-Xiaoli Matrix inverse lemma 
光子学报
2021, 50(9): 0910002
作者单位
摘要
1 大庆师范学院机电工程学院, 黑龙江 大庆 163712
2 哈尔滨工程大学信息与通信工程学院,哈尔滨 150001
高光谱图像在****和民用领域都有大量的应用, 特别是异常目标检测不需要任何先验信息, 使其成为高光谱图像处理和信息提取的关键技术和研究热点之一。通过系统的梳理、分析和研究, 对现有的异常目标检测算法进行了深入的归纳和总结, 并对高光谱图像异常目标检测涉及到的关键问题、未来的技术发展方向(如稀疏表示、张量分解和深度学习等)以及算法存在的问题进行了分析评价, 提出了一些具有创新性的观点并预测了未来的研究趋势。
高光谱图像 异常目标检测 稀疏表示 张量分解 hyperspectral imagery anomaly target detection sparse representation tensor decomposition 
电光与控制
2021, 28(5): 56
作者单位
摘要
陆军工程大学石家庄校区电子与光学工程系, 河北 石家庄 050003
随着高光谱图像技术的不断发展, 光谱分辨率和空间分辨率不断提高, 相比于其他遥感图像, 能够获得更为精细的光谱特征。 这为地物的高精度分类、 解混和目标检测等研究领域提供了理论平台, 其中由于高光谱异常目标检测技术不需要地物的先验信息, 更符合实际应用的需求。 针对现有的大多数高光谱异常目标检测算法只关注目标和背景在光谱信息方面的差异, 而忽略两者空间信息的差异, 导致检测精度不高的问题, 提出了一种基于空谱联合异常度的高光谱异常目标检测算法。 该算法不需要假设图像的背景模型, 建立在滑动双窗口的基础上, 提出了光谱异常度和空间异常度两个概念。 在光谱异常度计算中, 考虑了波段间的非线性特征, 采用光谱角匹配的核函数方法进行检测, 基于双窗口模型的基础上逐个计算中心像元与局部背景像元的核光谱角并设置阈值来获得中心像元的光谱异常度; 在空间异常度的计算中, 由于物质在空间方面的聚类特性, 通过构建像元点的空间窗模型能够得到代表像元类别的图像块灰度向量, 同时求解不同像元之间图像块灰度向量的欧式距离并设置阈值来获得中心像元的空间异常度; 最后将中心像元的光谱异常度与空间异常度进行加和则可得到中心像元的空谱联合异常度, 基于滑动双窗口模型对整幅图像的像元进行逐个检测, 即可得到图像的异常检测结果。 采用AVIRIS的三组真实高光谱数据对所提算法进行仿真实验, 并与传统的RX算法、 LRX算法和KRX算法进行对比研究, 结果表明本文算法具有较好的检测效果, 与KRX算法相比, 运行速度具有较大幅度的提升。
高光谱图像 异常目标检测 光谱异常度 核光谱角 空间异常度 图像块灰度向量 Hyperspectral Anomaly target detection Spectral anomaly degree Kernelspectral angle Spatial anomaly degree Image block gray vector 
光谱学与光谱分析
2020, 40(6): 1902
作者单位
摘要
1 陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
2 解放军31681部队, 甘肃 天水 741000
3 解放军68129部队, 兰州 730000
针对低秩稀疏矩阵分解的高光谱异常目标检测算法忽略了图像的空间信息, 导致检测精度低的问题, 提出了一种联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测算法。算法综合利用了高光谱图像的光谱信号与空间信号, 并与图像自身的稀疏性相结合, 对经典的基于低秩稀疏矩阵分解的目标检测算法进行改进, 该算法以待测像元为中心构建一定大小的空间窗, 计算中心像元与邻域内其他像元的空间相似度权值和光谱相似度权值, 通过计算邻域内其他像元对中心像元的比例权值得到了中心像元的重构光谱值并作差得到两者的残差矩阵; 最后基于低秩稀疏矩阵分解的高光谱异常目标检测算法得到图像的稀疏矩阵, 将代表异常目标信息的稀疏矩阵和残差矩阵相加并求解矩阵行向量之间的欧式距离得到像元的异常度, 设置阈值, 得到检测结果。为验证所提算法的检测性能, 采用了真实的高光谱数据进行仿真实验, 并与现有算法进行对比, 结果表明该算法能够得到更高的检测精度。
高光谱图像 异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵 hyperspectral image anomaly target detection low rank sparse matrix decomposition sparse matrix residual matrix 
半导体光电
2020, 41(1): 141
作者单位
摘要
大庆师范学院 机电工程学院, 黑龙江 大庆 163712
针对KRX方法对高光谱图像进行异常目标检测时存在检测效率低和虚警率高的问题, 在充分分析高光谱图像数据特征基础上, 本文提出一种最优波段子空间方法的高光谱图像异常目标检测算法。该算法首先利用双边滤波方法对高光谱图像进行全局滤波, 充分利用双边滤波的优点, 使得高光谱图像背景信息得到抑制; 然后采用经典的自动子空间方法对高光谱图像进行波段子集划分; 再利用联合偏度-峰度指标, 在每个波段子集内选出最优波段; 最后利用这些最优波段构成新的波段最优子空间, 在此基础上, 在最优波段子空间中利用Kernel RX算法进行异常目标检测, 从而得到异常检测结果。本文利用真实的高光谱图像进行仿真验证, 获得异常目标、检测的虚警数和ROC等检测结果。结果表明, 该算法具有鲁棒性强、虚警率低和检测精度高等优点。
高光谱遥感图像 异常目标检测 双边滤波 波段子空间 hyperspectral remote sensing imagery anomaly target detection bilateral filtering bands subspace 
液晶与显示
2019, 34(9): 897
作者单位
摘要
陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
针对协同表示的高光谱异常目标检测算法的异常点敏感问题, 提出了一种基于背景纯化的改进协同表示的高光谱异常目标检测算法。利用扩展数学形态学的膨胀操作消除局部背景模型中可能存在的异常点, 从而得到更为纯净的背景字典, 能够有效地消除检测过程中异常点对检测效果的负面影响, 从而提高检测精度。采用该算法对高光谱数据进行仿真实验, 并与现有算法进行对比, 结果表明该算法具有更好的检测效果。
高光谱 异常目标检测 异常点 扩展数学形态学 背景字典 hyperspectral anomaly target detection anomaly points extended mathematical morphology backedground dictionary 
半导体光电
2019, 40(5): 732
作者单位
摘要
1 杭州电子科技大学 计算机学院, 杭州 310018
2 大连海事大学 信息科学技术学院, 辽宁 大连 116026
3 中国科学院光谱成像技术重点实验室, 西安 710119
4 浙江大学 电气工程学院, 杭州 310027
为了有效缓解海量高光谱数据存储与传输压力并快速精确检测异常目标, 提出一种以滑动阵列窗像元为局部背景的高光谱图像非因果实时RXD异常检测方法.利用随数据逐像元接收而滑动的阵列窗确定局部背景像元, 运用Woodbury引理, 通过矩阵与向量的乘法和矩阵的加减实现局部背景协方差矩阵的求逆运算, 在逐像元接收数据的同时实现阵列窗口中心像元的异常检测.模拟和真实高光谱图像实验结果表明, 与现有实时检测方法相比, 所提方法在检测性能或运行效率上有所提升; 相比非实时的滑动阵列RXD异常检测, 所提方法时间复杂度更低, 处理大小为200×200含189波段的图像, 其加速比达到近26倍.实验结果验证了该方法能在不降低检测精度的同时满足低运算量和低存储空间的实时性要求.
高光谱异常目标检测 实时算法 递归计算 协方差矩阵 滑动阵列 Hyperspectral anomaly target detection Real-time algorithm Recursive calculation Covariance matrix Sliding array 
光子学报
2018, 47(7): 0710001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!