宣经纬 1,2,3,*饶长辉 1,2钟立波 1,2田雨 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
在地基太阳观测中,光线在穿越大气层时会受到大气湍流的影响而导致图像扭曲、变形以致质量下降。为了消除或降 低大气湍流的影响,事后图像处理技术被用来获得高分辨力的太阳图像。基于斑点干涉法和斑点掩模的事后重建算 法可以获得高分辨力的图像,但由于计算复杂度高,难以满足实时性的要求。在讨论了算法原理的基础上, 使用CUDA并行计算架构实现了太阳斑点重建算法并行化。实验结果表明,在GPU环境下,一张TiO通 道2304 pixel×1984 pixel像素大小的图像,可以在70 s内完成重建,相比运行在CPU上的串行程序,加速比可达7以上。
图像重建 斑点干涉法 斑点掩模法 并行计算 GPU GPU CUDA CUDA image reconstruction speckle interferometry speckle masking parallel computing 
大气与环境光学学报
2020, 15(2): 90
唐若林 1,2,3,*田雨 1,2钟立波 1,2饶长辉 1,2
作者单位
摘要
1 中国科学院自适应光学重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京 100049
地基太阳高分辨力成像中,自适应光学系统补偿了图像中心等晕区的像差,需要斑点图像重建技术用来产生全视场衍射极限分辨率的图像。一个从Matlab程序移植而来的C语言程序被设计用于加速处理。该程序采用斑点干涉法重建图像的傅里叶振幅和斑点掩膜法重建图像的傅里叶相位。使用OpenMP进行加速,使核心间共享了部分内存资源,图像按子块进行并行计算。移植过程中程序算法上进行了必要的优化并移除了大量的冗余计算。程序使用英特尔ICC编译器编译,运行在一个12核的Linux服务器上。一张1280 pixel×1280 pixel的图像可以在31 s内重建完成。相对于单核运行,加速比最高可以达到10.66。单台服务器上相对于并行接口获得更好的扩展性。
图像处理 图像重建技术 斑点干涉法 斑点掩膜法 并行计算 
激光与光电子学进展
2017, 54(6): 061001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!