作者单位
摘要
1 河北科技师范学院机电工程学院, 河北 秦皇岛 066004
2 国土资源部咨询研究中心, 北京 100035
可调谐半导体激光器在调谐过程中的瞬时光谱特性, 如瞬时的波长、 调谐率、 功率、 线型和线宽等参数影响着以激光器为光源的光学测量和光相干通信系统的精度。 然而, 能够同时测量这些瞬变参数的技术至今未见报道。 提出了一个基于时频分析的测量半导体激光器在调谐过程中瞬时光谱参数的方法, 利用一个短时延外差测量系统, 利用激光器瞬时光谱参数与差拍信号瞬时参数的关系, 最终获得了半导体激光器在连续电流调谐过程中的瞬时光谱。 测量系统采用了10 cm光程差的Mach-Zehnder干涉仪, 调谐电流是幅度为20~120 mA、 频率是1 kHz的锯齿波, 差拍信号可视为直流信号、 载波信号与噪声的叠加, 按照短时延相干光测量原理, 差拍信号中的直流分量幅度的大小反映了激光器输出光信号的功率; 载波信号是一种多项式相位信号, 由其频率可以推算激光器输出光谱的中心频率或波长; 噪声信号则与激光器输出光谱的线型和线宽相关, 通过对噪声信号进行时频分析, 可以获知激光器在连续电流调谐过程中每一时刻或每个电流下的瞬时线型、 线宽。 采用了趋势局部均值分解方法对差拍信号进行了准确分离, 并对分离信号分别进行处理, 同时获知了半导体激光器在调谐过程中的瞬时输出光功率、 光波长、 调谐率及线型、 线宽。 在去掉弛豫部分后截取的整周期差拍信号对应的调谐电流60~115 mA变化范围内, 半导体激光器(FRL15DDR0A31-18950, Furukawa)瞬时输出光功率变化范围是5.16~10.6 mW, 瞬时光波长变化范围为1 579.2~1 579.6 nm; 激光器的瞬时调谐率在0.004 8~0.011 5 nm·mA-1范围内单调变化; 线宽是852.55~954.95 kHz, 呈非线性随机分布。 基于短时延、 局部均值分解和时频分析方法的瞬时光谱参数测量系统可以准确得到各瞬时光谱参数, 测量结果与激光器的静特性相符, 且测量系统结构简单, 使我们更深入地理解激光器的工作原理, 具有广阔的应用前景。
半导体激光器 激光器测量 时频分析 光学信息处理 Semiconductor lasers Laser measurements Time-frequency analysis Optical data processing 
光谱学与光谱分析
2019, 39(4): 1025

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!