作者单位
摘要
西北核技术研究所 激光与物质相互作用国家重点实验室, 陕西 西安 710024
为了准确测量中红外高能激光系统的远场功率密度时空分布等参数, 分析了室温光导型碲镉汞(HgCdTe)探测器在环境温度变化和光热效应情况下存在的探测器光敏元温升等热问题, 并分别给出了应对措施。从HgCdTe的电学参数经验公式和光导型探测器工作原理出发, 分析了暗电阻和响应率与光敏元工作温度的相关性。建立了计入接触热阻和自然对流效应的光导型HgCdTe探测器热分析模型, 并对模型进行了实验验证。分析了光敏元与环境温度间的热平衡时间特性, 提出了连续激光测量中的环境温度校正模型。讨论了激光辐照下探测器的动态响应特性, 给出了激光加热探测器光敏元导致的附加光热信号的修正方法, 该方法在典型应用条件下可将测量系统的单通道测量不确定度降低2%以上。目前, 所述方法均已成功应用于多套远场激光光斑定量测量系统。
激光参数测量 激光能量测量 中红外激光 HgCdTe光导探测器 热信号修正 laser parameter measurement laser energy measurement mid-infrared laser HgCdTe photoconductor detector thermal signal correction 
光学 精密工程
2015, 23(1): 22
作者单位
摘要
西北核技术研究所 激光与物质相互作用国家重点实验室,陕西 西安 710024
设计了一种用于高重复频率脉冲激光能量测量的峰值保持电路。电路由电荷积分器、2阶低通滤波器、时间延迟触发器和峰值保持器组成,通过将光电流脉冲转换成电压脉冲,电压脉冲的峰值与对应电流脉冲所包含的能量成正比。实验测量结果表明:该电路可以测量脉宽<10 ns,重复频率≥2 kHz的重频窄脉冲激光的脉冲能量,且工作稳定,其线性动态范围≥140倍。该电路可应用于光电阵列探测系统中,能实现较高的空间分辨力。
激光能量测量 高重复频率脉冲激光 峰值保持电路 电荷积分器 laser energy measurement high-repetition-rate pulse laser peak value hold circuit charge integrator 
中国光学
2013, 6(2): 196
作者单位
摘要
1 西安工业大学 光电工程学院,西安 710032
2 元西安工业大学 光电工程学院,西安 710032
针对锥形腔高能激光计后向散射能量损失补偿问题,系统分析了均匀分布激光入射强漫反射面情况下的锥形吸收腔的后向散射问题,进而针对不同高能量激光的输出光斑形状,建立了锥形吸收腔开口处光功率密度分布和后向散射总功率的数学模型,在此基础上对测量结果进行了补偿和修正,有效改善了高能量激光能量测量准确度.
高能量激光 激光能量测量 锥形吸收腔 后向散射 High-energy laser Laser energy measurement Conical cavity Backscattering 
光子学报
2009, 38(5): 1052
作者单位
摘要
西安应用光学研究所 国防科工委光学计量一级站,西安 710065
锥形吸收腔高能量激光能量计测量过程中的后向散射能量分布是影响测量准确度的一个关键参量。依据锥形腔能量计内表面与入射激光相互作用的光学定律,推导了能量计内入射激光光束能量的分布函数;并结合复化辛普森数值计算方法,计算分析了当能量计反射系数一定,而入射激光光束直径与吸收腔直径之比不同时,锥形吸收腔开口处光功率密度分布和后向散射总功率。计算结果表明,对于大口径高能量激光,后向散射能量损失将达到0.5%至2.5%左右。根据后向散射光功率密度分布计算得到后向散射总能量,对测量结果进行修正,将有效改善高能量激光能量测量准确度。
高能量激光 激光能量测量 后向散射 功率密度分布 数值计算 high energy laser laser energy measurement backscatter power density profile numerical calculation 
激光技术
2006, 30(1): 0043

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!