作者单位
摘要
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710072
2 中国科学院大学,北京 100049
3 中国科学院西安光学精密机械研究所 中国科学院光谱成像技术重点实验室,西安 710072
为解决传统光纤传像系统中分辨率受传像光纤像素数量制约而导致系统整体分辨率提升困难的问题,提出一种基于塑料传像光纤阵列的多孔径高分辨成像技术,利用传像光纤阵列及图像拼接技术突破像素数难以提升的瓶颈。通过高分辨、小截面的传像光纤组合阵列提升像素,结合微透镜阵列重叠成像的效果,实现光纤阵列成像的完整性,有望使光纤传像系统像素数达到百万数量级。通过建立光纤传像系统性能指标与光学参数之间的关系,仿真设计一款室内监控远心镜头作为传像系统的主镜头,并设计微透镜阵列作为主镜头与传像光纤阵列之间的中继镜头。仿真结果表明,主镜头与微透镜阵列均满足传像光纤性能需求。实验测试结果表明,系统含有40万有效像素,分辨率为40 lp/mm,图像输出完整,该成像系统设计具有良好的可行性,对光纤传像系统的分辨率提升具有重要的实际参考意义。
高分辨成像 多孔径成像 传像光纤阵列 微透镜阵列 监控镜头 High resolution imaging Multi-aperture imaging Imaging fiber array Microlens array Surveillance lens 
光子学报
2022, 51(9): 0906003
作者单位
摘要
1 长春理工大学 光电工程学院, 吉林 长春 130022
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
为了满足监控镜头的小型化、高像质以及大视场的需求, 利用同心结构的同心透镜, 并依据曲面传感器的发展现状及趋势, 设计了一款同心结构的曲面像面监控镜头光学系统。该监控系统的全视场角可达到140°, 有效焦距为7.88 mm, F数为1.5, 系统总长15.12 mm, 像素可达1 100万。设计结果表明, MTF值在中心视场和0.7视场处均接近衍射极限, 在全视场处均大于0.59; 各个视场的弥散斑半径均小于0.6 μm。相比于已有的监控镜头光学系统, 该设计在大视场范围内保证了优良的像质, 并且实现了小型化。
光学设计 监控镜头 同心结构 小型化 超广角 optical design monitor lens monocentric structure miniaturization 
红外与激光工程
2018, 47(12): 1218002
王波 *
作者单位
摘要
上海羽宸光电科技有限公司, 上海 200331
为满足全景监控镜头的高清、大视场的要求,采用反远距系统设计了工作波段为可见的4.86~6.56 μm、F数为2、垂直全视场角为185°、焦距为1.3 mm的1 000万像素高清全景监控镜头光学系统。通过匹配光学材料和分配透镜光焦度,在-20~+60 ℃温度范围内对全景监控镜头光学系统进行了设计及像质评价。结果表明,系统在奈奎斯特频率300 lp·mm-1处中心视场的光学调制传函接近衍射极限,大于0.4,0.7视场以内的光学调制传函大于0.3。系统整体无温度离焦,成像质量良好、结构紧凑,且适用于感光面尺寸为6.119 mm × 4.589 mm、像元数为3 664×2 748的CMOS探测器。
光学设计 全景监控镜头 高像素 大视场 optical design panoramic monitor lens high resolution large field of view 
光学仪器
2016, 38(5): 434

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!