作者单位
摘要
安徽省大气探测技术保障中心,安徽 合肥 230031
利用三波长偏振激光雷达和气溶胶在线监测仪器的协同观测,获取了2021年1月14日—16日寿县国家气候观象台一次沙尘过程气溶胶垂直分布、粒子数浓度、质量浓度、散射特性和能见度观测数据,并结合常规地面气象观测资料,分析了沙尘过程气溶胶微物理、光学特性及垂直分布的阶段性演变特征。结果表明:沙尘过境期间气溶胶粒子总数浓度峰值为5431 cm-3,PM10质量浓度峰值为447.2 μg/m3,PM2.5和PM10的质量浓度比为0.43±0.10。沙尘、霾和晴空阶段下的气溶胶谱分布均可表示为2个细粒模和1个粗粒模的叠加,沙尘阶段气溶胶粒子数显著高于晴空和霾阶段,2个细粒模的粒子几何平均半径基本一致,在粗粒模中,沙尘阶段的粒子几何平均半径为2.24 μm,明显大于晴空阶段的1.74 μm和霾阶段的1.79 μm。沙尘阶段气溶胶总散射系数平均值大于霾阶段和晴空阶段,其后向散射比较小,空气中以较大的沙尘粒子为主。3个波长的气溶胶消光系数垂直分布变化趋势基本一致,沙尘阶段气溶胶层高度扩展至近地面3.0 km,退偏振比基本大于0.1,Angstr?m指数在0.1~0.4范围。
大气光学 气溶胶 谱分布 光学特性 空气污染监测 
激光与光电子学进展
2022, 59(19): 1901002
作者单位
摘要
南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044
为了获取大气复合污染下臭氧和气溶胶的垂直分布信息,利用紫外多波长激光雷达对河北望都县进行了臭氧和气溶胶的同步观测。结果表明:双波长差分吸收反演算法中大气后向散射项引起的臭氧质量浓度误差最大,最大平均质量浓度误差为16 μg/m³;三波长差分吸收算法可以减小部分气溶胶的影响。基于反演的臭氧质量浓度,对激光雷达三个波长的消光系数进行臭氧吸收的剔除,得到了各波长的气溶胶消光系数,并且气溶胶参数的反演结果与AERONET的气溶胶光学厚度(AOD)数据一致性较好。最后基于紫外多波长激光雷达反演结果、HYSPLIT后向轨迹分析和MERRA-2再分析资料对望都县典型污染天气进行了分析。通过反演300 m处的臭氧质量浓度和300 m以上的AOD,发现二者变化趋势相反,并且AOD对紫外辐射的抑制作用在中午表现最明显。观测期间,望都县大气污染可能受到西北方向污染物输送的影响。
大气光学 激光雷达 臭氧 气溶胶 空气污染监测 
激光与光电子学进展
2022, 59(16): 1601001
作者单位
摘要
1 中国科学院 安徽光学精密机械研究所 中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学 研究生院科学岛分院, 安徽 合肥 230031
城市近地面气溶胶的分布随时空快速变化, 常用的地基定点监测只能获取区域内有限位置的气溶胶质量浓度, 大致反映区域内气溶胶的分布情况。为确定气溶胶和污染物在城市近地面水平路径上的分布情况,利用微脉冲激光雷达(MPL)、粒子计数器、能见度仪和颗粒物质量浓度监测仪获得的气溶胶数据, 根据Mie散射理论建立了气溶胶消光系数、粒子谱分布和质量浓度等参数的数学模型, 反演得到了水平路径上的气溶胶质量浓度分布。该方法可以以测量点为中心进行0~6 km的360°的水平扫描, 具有监测范围大、分辨率高的优点。最后开展了气溶胶水平分布的实际测量, 获得了距离6 km长的水平路径上近地面气溶胶质量浓度的实时分布。这为研究城市气溶胶的污染来源和动态变化提供了有效的数据支持。
大气光学 气溶胶探测 激光雷达 空气污染监测 质量浓度 atmospheric optics aerosol detection micro pluse lidar air pollution monitoring mass concentration 
光学 精密工程
2017, 25(7): 1697
作者单位
摘要
中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
搭建了基于近红外连续激光器的高灵敏度快速扫描光腔衰荡光谱仪(SC-CRDS)。通过压电陶瓷(PZT)快速扫描腔长,并用跟踪电路使腔长自动跟踪激光波长变化,实现衰荡光谱的快速测量。利用CH4在1653.73 nm (6046.95 cm-1)附近的光谱吸收峰,用该装置对CH4气体含量进行测量。通过测量多个光谱点确定吸收线中心吸收峰值和激光波长,并反馈补偿激光中心波长使其稳定在吸收线,成功解决了由于激光器波长/频率严重漂移导致的不能持续准确测量问题。利用标准浓度的CH4样品校准其1653.73 nm 吸收峰谱线强度。该光腔衰荡光谱仪装置结构简单,性能稳定,CH4浓度检测限达到1.0×10-9,可用于长时间监测室外空气中的CH4浓度。
光谱学 高灵敏度光学探测 光腔衰荡光谱 空气污染监测 激光传感器 甲烷 
光学学报
2015, 35(9): 0930002
Author Affiliations
Abstract
Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
A method of interference correction for improving the sensitivity of non-dispersive infrared (NDIR) gas analysis system is demonstrated. Based on the proposed method, the interference due to water vapor and carbon dioxide in the NDIR NO analyzer is corrected. After interference correction, the absorbance signal at the NO filter channel is only controlled by the absorption of NO, and the sensitivity of the analyzer is improved greatly. In the field experiment for pollution source emission monitoring, the concentration trend of NO monitored by NDIR analyzer is in good agreement with the differential optical absorption spectroscopy NO analyzer. Small variations of NO concentration can also be resolved, and the measuring correlation coefficient of the two analyzers is 94.28%.
大气与海洋光学 空气污染监测 非分散红外 灵敏度 010.0010 Atmospheric and oceanic optics 010.1120 Air pollution monitoring 
Chinese Optics Letters
2011, 9(6): 060101

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!