作者单位
摘要
1 燕山大学信息科学与工程学院, 河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
2 特种光纤与光接入网省部共建重点实验室, 上海大学, 上海 200444
通过化学法制备了纳米银溶胶基底和微腔型光纤表面增强拉曼散射(SERS)基底, 其中光纤SERS基底的微腔结构是通过氢氟酸(HF)腐蚀得到的。 实验采用湿法检测, 首先将纳米银溶胶基底与罗丹明6G(R6G)混合, 找到增强效果最强时的裸光纤微腔结构, 在此结构的基础上采用溶胶自组装法制备银纳米颗粒包覆的光纤SERS基底, 通过控制自组装时间制备不同光纤SERS基底(Ag/光纤-x, 其中x为自组装时间, 分别为10, 20, 30, 40, 50和60 min)。 以10-3 mol·L-1的R6G为探针分子, 对Ag/光纤-x基底进行初筛, 得到增强效果最强的Ag/光纤-30基底。 通过检测不同浓度的R6G溶液, 对纳米银溶胶基底和Ag/光纤-30基底的SERS性能进行研究。 实验结果表明, 在相同的实验条件下, 纳米银溶胶基底和Ag/光纤-30基底对R6G的检测限(LOD)分别为10-6和10-9 mol·L-1; 在1 362 cm-1拉曼位移处对两种基底的拉曼强度和浓度进行对数转换拟合, Ag/光纤-30基底的拟合优度R2达0.975 3, 远高于纳米银溶胶基底; 拉曼信号的再现性检测结果表明, 两种基底在各个特征峰处的RSD值均在合理范围内, 但Ag/光纤-30基底的RSD值范围更小, 范围最大值仅为10.94%; 两种基底的稳定性测试结果表明, 纳米银溶胶基底35 d后, 在1 362 cm-1位置处的综合拉曼强度下降了45.90%, 而Ag/光纤-30基底35 d后, 综合拉曼强度仅下降了17.58%, 说明Ag/光纤-30基底具有长期稳定性。 同时, 对两种基底增强因子(REF)进行计算, 对浓度为10-6 mol·L-1的R6G溶液, 纳米银溶胶基底和Ag/光纤-30基底的REF数值分别为3.49×106和2.14×107, 说明对于同一浓度的R6G溶液, Ag/光纤-30基底具有更强的增强效果, 且比纳米银溶胶基底高出一个数量级。 通过对比两种基底的SERS性能, 表明Ag/光纤-30基底具有更高的灵敏度、 更好的再现性以及长期稳定性。 因此, 基于银纳米颗粒包覆的光纤SERS基底在农残化学分析、 生物医学检测等痕量检测方面有潜在的应用价值。
表面增强拉曼散射 纳米银溶胶 光纤 溶胶自组法 罗丹明6G Surface enhanced Raman scattering Silver sol Fiber Sol self-assembly method Rhodamine 6G 
光谱学与光谱分析
2022, 42(2): 470
作者单位
摘要
楚雄师范学院 云南省高校分子光谱重点实验室,云南 楚雄 675000
本文应用表面增强拉曼散射技术以纳米银溶胶作为基底直接对17种葱属植物的挥发性物质进行了检测,进一步用SERS谱图结合化学计量学多变量统计分析,对17种葱属植物进行鉴别分类研究,并提出一种基于SERS的快速、有效的挥发性物质筛选式葱属植物鉴别分类研究方法。对不同年份制作的纳米银溶胶进行了重现性测试,结果显示纳米银溶胶作为SERS基底对葱属植物的挥发性物质检测重现效果较好;对同一植物不同部位的挥发性物质进行检测,结果显示光谱峰位变化不大,只是个别峰的相对强度发生了变化;对17种葱属植物的挥发性物质进行检测,结果显示:17种葱属植物的挥发物的SERS光谱可分为三组,1-丙硫醇增强组、烯丙基甲基硫醚增强组、二烯丙基二硫增强组,说明纳米银溶胶对葱属植物的挥发物具有选择性增强效果;17种葱属植物挥发物的SERS谱结合聚类分析、因子分析、判别分析进行多变量统计分析,分析结果显示,样品能按三个不同增强组进行准确分类。实验结果表明,基于SERS的挥发物筛选式葱属植物鉴别分类研究方法可以为葱属植物分类研究提供参考信息。
葱属 表面增强拉曼散射 多变量统计分析 挥发物 纳米银溶胶 Allium surface-enhanced Raman scattering multivariate statistical analysis volatiles nano-silver colloid 
光散射学报
2018, 30(2): 107
司民真 1,2,*李伦 1,2张川云 1,2张德清 1,2
作者单位
摘要
1 楚雄师范学院云南省高校分子光谱重点实验室, 云南 楚雄 675000
2 楚雄师范学院光谱应用技术研究所,云南 楚雄 675000
建立了常温常压下快速检测新鲜葱属植物-大葱主要挥发性气体的方法。采用顶空瓶在常温常压下收集大葱的挥发物,将挥发物用注射器注入纳米银胶中,进行SERS测量。结果表明大葱的挥发物SERS光谱重现性非常好;将大葱挥发性物的SERS谱与1-丙硫醇(1-Propanethiol)和烯丙基甲基硫醚(allyl methyl sulfide)混合气体的SERS谱相比,具有较好的相似性,说明大葱的挥发物主要由1-丙硫醇和烯丙基甲基硫醚气体组成。利用Gaussian 03软件获得1-丙硫醇-银(1-Propanethiol-Ag)的Raman光谱,计算结果与1-丙硫醇的SERS实验结果对应较好,说明1-丙硫醇在纳米银基底上的增强为化学增强。顶空与SERS结合可直接用于对葱属植物挥发性物的研究。
葱属植物 大葱 挥发性气体 顶空 纳米银溶胶 Allium green chinese onion volatile organic compounds headspace SERS SERS nano-silver colloid 
激光生物学报
2015, 24(4): 348
作者单位
摘要
天津大学化工学院绿色合成与转化教育部重点实验室, 天津 300072
以硝酸银为银源、间苯二酚为还原剂、聚乙烯吡咯烷酮为保护剂通过化学还原法制得纳米银颗粒,通过离心洗涤等操作洗掉多余的反应物,将其分别超声分散于水、无水乙醇和乙二醇中获得0.2 Wt%不同体系的纳米银溶胶.利用激光粒度分析仪、透射电子显微镜、扫描电子显微镜和同步热分析仪对纳米银颗粒进行表征并测定纳米银溶胶中的银含量.激光粒度分析仪的粒度分析结果表明,实验制得的纳米银颗粒的粒径在100 nm左右,且粒径分布均一.透射电子显微镜和扫描电子显微镜的结果进一步证实纳米银颗粒的粒径在纳米尺度范围且粒径均匀.采用Turbiscan多重光散射法研究了不同体系纳米银溶胶的分散稳定性,分析了导致纳米银溶胶不稳定的主要因素.研究发现:影响纳米银溶胶分散稳定性的主要因素包括颗粒粒径的变化和颗粒的迁移.对于水相体系,样品池中间部分背散射光强度随时间变化不大,样品池底部和顶部背散射光强度有较大变化,说明其稳定性的主要影响因素是纳米银颗粒的迁移,颗粒粒径变化影响不大;对于乙醇和乙二醇体系,样品池中间部分、底部和顶部的背散射光强度均有明显变化,说明颗粒粒径的变化和颗粒的迁移对体系稳定性均有一定程度的影响;最后通过比较三个体系的稳定性动力学指数,得到体系稳定性由高到低依次为乙二醇、水和乙醇。
纳米银溶胶 稳定性 Nano-silver particles Stability Turbiscan Lab Turbiscan Lab 
光谱学与光谱分析
2015, 35(7): 1992

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!