作者单位
摘要
吉林大学 电子科学与工程学院, 集成光电子学国家重点实验室, 吉林 长春  130012
光学频率梳(简称光频梳)作为一种优秀的多波长光源在通信领域具有巨大的应用潜力。通过将光频梳光源与波分复用技术(WDM)、空分复用技术结合(SDM),通信系统可以具有百Tbit/s量级的传输速率,在5G/6G通信、物联网、自动驾驶等方面具有重要的应用价值。目前实现光频梳的方法主要有以下四种,分别为基于锁模激光器产生飞秒光频梳、基于光学微腔产生光频梳、基于电光调制器产生光频梳以及基于行波四波混频产生光频梳。它们各具特点,但均很难同时实现宽光谱、高信噪比、高平坦度、高的单梳齿功率以及梳齿频率间隔大范围可调,这在一定程度上影响了光频梳在光通信领域的应用。本文提出基于受激布里渊激光腔产生种子梳,采用腔外负色散光纤进行脉冲压缩,进一步利用色散调控的高非线性氟碲酸盐光纤进行扩谱,从而实现光频梳产生。数值计算结果表明,通过该系统,我们可以得到重复频率大范围可调、光谱覆盖整个O-U波段且在O-U波段梳齿强度标准差小于5 dB的平坦光频梳,证明了通过基于布里渊激光腔与色散调控高非线性氟碲酸盐光纤的光学系统产生可用于光通信的平坦光频梳的可行性。
光频梳 色散调控氟碲酸盐玻璃光纤 脉冲压缩 腔外扩谱 O-U波段平坦 optical frequency comb dispersion-controlled fluorotellurite glass fiber pulse compression spectral broadening out of cavity O-U band flat 
发光学报
2024, 45(3): 458
作者单位
摘要
1 北京交通大学电子信息工程学院光波技术研究所全光网络与现代通信网教育部重点实验室,北京 100044
2 北京交通大学电子信息工程学院,北京 100044
提出一种利用锁相双频激光作为泵浦源输入正常色散富硅氮化硅微环谐振腔产生光频率梳的方案。对富硅氮化硅微环谐振腔进行色散调控,实现1550 nm波段平坦正常色散优化设计。利用LLE(Lugiato Lefever equation)方程进行光频率梳产生仿真,分析改变泵浦失谐时光频率梳产生的时域和频域演化过程。同时,探究各项参数对光频率梳产生的影响,包括泵浦功率、双频激光功率占比、微腔波导损耗、微腔色散、双频激光频率间隔。仿真实现的光频率梳带宽可覆盖1520 nm到1580 nm。
非线性光学 光频率梳 富硅氮化硅 色散调控 微腔 
光学学报
2024, 44(3): 0319005
作者单位
摘要
1 福建师范大学 医学光电科学与技术教育部重点实验室/福建省光子技术重点实验室,福建 福州 350007
2 商丘师范学院 电子电气工程学院 河南省微腔与光电智能传感工程研究中心,河南 商丘 476000
3 中国科学技术大学 中科院量子信息重点实验室,安徽 合肥 230026
基于光学微腔的光频梳具有阈值低、光谱宽及结构紧凑等特点,在精密测量与传感等领域具有重要的应用前景,因此近年来微腔光频梳成为国际研究热点。目前相关的研究都聚焦于红外波段锁模光频梳的产生原理和应用探索,虽然可见光波段的光频梳在精密光谱、原子钟及生物医学等领域有特殊应用价值,但是可见光频梳的实现极具挑战性。文中在简要阐述光频梳产生原理的基础上,介绍了在可见光波段实现光频梳的主要挑战,以及目前三种实现方案的研究进展,包括利用材料的二阶与三阶非线性效应、调节微腔的几何色散和模式强耦合效应调控色散来产生可见光频梳。
光频梳 回音壁模式微腔 色散调控 模式耦合 optical frequency combs whispering gallery mode microcavity dispersion management mode coupling 
红外与激光工程
2022, 51(5): 20220335
作者单位
摘要
中国科学技术大学 精密机械与精密仪器系,安徽合肥230026
为了在基于回音壁模式光学微腔的光学频率梳生成中优化微腔的性能和光频梳的质量,对氟化镁晶体微腔的色散调控进行研究。首先,理论仿真研究了MgF2晶体微腔边缘形状对腔内模场和总色散的影响;接着根据仿真结果实际加工了两种面形的MgF2晶体微腔,分别为边缘平面型和单边楔形;然后,搭建了微腔性能检测系统和晶体微腔光梳生成系统,实测加工出的MgF2晶体微腔样品的品质因子(Q值)最高可达1.1×108;最后在加工的两种面形晶体腔中均有效激发了超过200 nm的宽光谱范围的克尔光频梳。实验结果验证了边缘楔形的微腔结构确实能够有效压缩模场并调控总色散,相比于边缘平面型的微腔能够产生更宽光谱范围的光梳。
回音壁模式 MgF2晶体微腔 克尔光梳 色散调控 whispering gallery mode crystal MgF2 micro-resonator Kerr frequency comb dispersion control 
光学 精密工程
2022, 30(4): 403
作者单位
摘要
浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
微纳光纤是一种直径接近或小于传输光波长的纤维波导,由于纤芯和包层折射率差较大,具有强光场约束、强倏逝场、低损耗、反常波导色散、表面均匀性好和机械性能高等特性。近年来,以纳米材料作为饱和吸收体的被动锁模激光器成为超短脉冲激光技术方向的研究热点。得益于微纳光纤的强光场约束能力及大比例倏逝场,纳米材料与微纳光纤的复合结构能显著增强光与物质的相互作用,进而降低该复合结构的饱和吸收阈值,为超短脉冲产生和非线性动力学等研究提供一个新颖而灵活的平台。同时,微纳光纤因具有反常波导色散、光谱滤波、饱和吸收和偏振敏感等特性,在激光器的色散调控、偏振锁模等方面获得应用。介绍了微纳光纤的制备和特性以及在锁模激光方面的典型应用和相关技术的最新进展,并就未来的发展方向进行了展望。
微纳光纤 锁模激光器 饱和吸收体 色散调控 
光学学报
2019, 39(1): 0126011
作者单位
摘要
中国科学院光电技术研究所微细加工光学技术国家重点实验室, 成都 610209
超构材料通常由亚波长的周期性谐振单元组成,具有自然材料所不具备的超常电磁特性,为操控电磁波提供了全新的技术途径。色散是材料的固有属性,调节亚波长结构的电磁共振可以实现奇异的色散特性,从而突破传统定律限制,实现对电磁波的任意操控,由此产生了一系列全新的应用,如超分辨成像/光刻、高效电磁吸收/辐射、平面光子器件等。本文总结了超构材料中色散调控的基本理论和几种典型方法,介绍了其在相关领域的应用,并对超构材料的发展前景作出展望。
超构材料 色散调控 局域相位调控 平面光学器件 metamaterials dispersion engineering local phase modulation planar optical devices 
光电工程
2017, 44(1): 3

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!