作者单位
摘要
1 中国矿业大学机电工程学院,江苏 徐州 221116
2 江苏省矿山智能采掘装备协同创新中心,江苏 徐州 221116
根据激光冲击的原理对超光电子铜箔进行了微尺度激光冲击平坦化(MLSF)处理。首先,通过MLSF实验研究脉冲能量和冲击次数等工艺参数对电子铜箔平坦化效果(表面粗糙度Sa)的影响规律;然后,根据电子铜箔平坦化效果与工艺参数的对应规律,阐明电子铜箔的MLSF原理;最后,采用透射电子显微镜对MLSF处理前后的电子铜箔进行显微表征,揭示电子铜箔MLSF的表面变形机理。研究结果表明:当激光脉冲能量为100 μJ、冲击次数为3次时,电子铜箔的表面粗糙度(Sa)从22.7 nm降低到5.0 nm,降低了78%;冲击波经吸收层和样品层后被放大,使得样品层(铜箔)与底板(玻璃)的表面形貌接近;金属箔内部的小塑性变形和下表面附近的大塑性变形是MLSF的表面变形机制。
激光技术 激光冲击 微尺度 电子铜箔 表面粗糙度 表面变形机理 
中国激光
2022, 49(16): 1602002
作者单位
摘要
1 天津中德应用技术大学机械工程学院, 天津 300350
2 燕山大学机械工程学院, 河北 秦皇岛 066004
3 广东工业大学机电工程学院, 广东 广州 510000
通过一种改进的有限元数值模拟方法研究多点激光冲击强化对TC17钛合金表面残余应力和表面变形的影响。为了验证该模拟方法, 将已有实验数据与数值模拟结果进行对比分析, 分布规律具有一致性。在此基础上, 分别分析了激光冲击次数和激光功率密度对表面残余应力和表面变形的影响, 数值模拟结果表明, 随着激光冲击次数的增加, 表面残余应力和表面变形增加, 分布不均匀性也增加, 3次激光冲击后, 表面残余应力和表面变形趋于饱和状态; 随着激光功率密度的增加, 表面残余应力和表面变形都增加。
激光技术 激光冲击强化 改进有限元模拟方法 表面残余应力 表面变形 laser technique laser shock processing modified finite element simulation method surface residual stress surface deformation 
应用激光
2019, 39(3): 475
作者单位
摘要
1 天津大学 精密测试技术与仪器国家重点实验室, 天津 300072
2 北京信息科技大学 仪器科学与光电工程学院, 北京 100192
3 奥克兰大学 机械工程系, 罗切斯特 48309
采用CCD相机采集物体变形前后的散斑图片, 利用一维经验小波变换对散斑图片进行逐行分解, 获得一系列的固有分量. 根据分解后分量的核概率密度函数提出基于核概率密度的自适应降噪法, 去除噪声干扰, 提取跟变形信息相关的分量并重构, 利用重构后的每一行获得变形前后重构散斑图. 采用Hilbert法计算重构后散斑图的相位, 对变形前后散斑图相位进行相减, 根据相位差进行解包裹获得物体表面变形信息.实验结果表明该方法能够有效地对物体表面变形进行测量, 且测量精度较经验模态分解提高4倍.
数字散斑干涉 相位提取 经验小波变换 表面变形 核概率密度估计 Digital speckle pattern interferometry Phase retrieval Empirical wavelet transform Surface deformation Kernel probability density 
光子学报
2018, 47(3): 0312001
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
针对精密反射镜的重力变形,提出了一种基于径向预紧力的变形补偿方法。以高数值孔径(NA)投影光刻物镜中的反射镜为研究对象,建立了反射镜的受力模型,定性分析了径向预紧力对反射镜重力变形的影响规律。利用有限元分析方法得到了在不同径向预紧力作用下反射镜的面形变化,通过数据拟合分析了径向预紧力与面形误差及其泽尼克系数之间的关系。分析结果表明:径向预紧力主要影响反射镜面形的球差项和三叶像差项;随着径向预紧力的增大,补偿后的面形误差呈现先减小后增大的趋势,当径向预紧力约为25 N 时,由于重力导致的面形误差由2.009 nm 减小为0.462 nm,补偿结果最优。通过实验测量了重力和预紧力作用下反射镜的面形误差,当径向预紧力为25 N 时重力导致的反射镜面形误差减小了0.988 nm,从而验证了分析过程和补偿方法的正确性。
光学器件 表面变形 面形补偿 预紧力 有限元方法 
光学学报
2016, 36(4): 0422006
作者单位
摘要
南京航空航天大学自动化学院 南京,210016
介绍了一种新型光学测量技术——剪切电子散斑技术的改进与应用,它是一种有效的基于激光技术,测量三维物体表面变形和形貌的非接触测量方法。与传统方法相比,改进后的方法光路结构和采用的算法更加简单,可广泛应用于表面应变、张力、材料特性的测量,残余应力的估计,表面泄露的监测以及物体表面三维形貌测量等领域。
光学测量 剪切电子散斑技术 表面变形测量 三维形貌测量 
激光与光电子学进展
2006, 43(6): 47

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!