作者单位
摘要
1 上海航天控制技术研究所光学导航与探测事业部, 上海200233
2 火箭军装备部驻天津地区军事代表室, 天津 300308
对空基光电对抗平台可见光变焦镜头进行了光机结构设计以及被动消热差设计,依据-20~50 ℃的工作温度指标要求,对变焦镜头进行光机热集成分析。用Patran软件对镜头加载温度应力,计算光机结构的热弹性变形,用Nastran软件解算热变形后各光学元件镜面节点的刚体位移。用Sigfit光机接口软件分析变形后每个透镜表面的Zernike系数,将结果导入Zemax中,预判镜片面型变化以及刚体位移变化对调制传递函数(MTF)与波前差的影响。实验结果表明,在-20~50 ℃的温度载荷下,后固定组的最大轴向位移可达6.107×10 -3 mm,严重影响了成像质量。通过挠性压圈实现轴向位移可控消热差设计,以减小温度载荷带来的影响。光机热集成分析表明,温度载荷下光学系统的MTF均大于0.3,满足技术指标要求。最后通过温度可靠性实验测试了变焦镜头的温度适应能力以及光机热集成分析的准确性,提供了一套高效、准确、适用范围广的光机热集成分析流程。
热响应 光电对抗平台 变焦镜头 光机热集成分析 被动消热差 
激光与光电子学进展
2020, 57(13): 131204
作者单位
摘要
北京理工大学 光电学院,  精密光电测试仪器及技术北京市重点实验室,  北京 100081
为了实现大变倍比连续变焦距红外光学系统的光学被动无热化设计, 研究了连续变焦距系统的无热化设计基本理论及方法。提出了在大相对孔径大变倍比连续变焦距红外系统中采用光学被动式消热差的方法。推导出了连续变焦距系统光学被动消热差的计算方法。基于这种计算方法, 设计了一个焦距30~150mm, 长波红外工作波段在8~12μm, 相对孔径1∶1.1的大变倍比、大相对孔径连续变焦距系统, 并进行光学被动消热差设计, 使系统在-30℃~60℃温度范围内MTF大于0.3满足成像要求。系统设计合理, 成像质量满足要求, 通过系统设计充分验证设计理论的可行性和实用性。
红外光学系统 无热化设计 光学被动消热差 连续变焦距系统 infrared optical system athermalization design optical passive athermalization continuously zooming system 
光学技术
2017, 43(1): 1
作者单位
摘要
长春理工大学空地激光通信国防重点学科实验室,吉林 长春 130022
为提高红外光学系统的目标探测识别能力,增强其温度适应能力,在分析红外材料在中波和长波红外波段的色差与热差特性的基础上,根据系统光焦度分配、双波段轴向消色差和双波段消热差等要求,利用红外色差图合理选择光学材料组合,设计了一款中波和长波红外双波段消热差系统,系统采用非制冷探测器,工作波段为3~5 μm和8~12 μm,由4片透镜组成,焦距为50 mm,相对空间为1:1.25,全视场角为14°,总长67.9 mm。设计结果表明:在温度范围-50~60 ℃范围内,在空间频率为17 lp/mm处,系统在中波和长波波段的MTF值均大于0.4,表明系统有较强的温度适应性。
被动消热差 红外双波段 光学设计 passive athermal infrared dual-band optical design 
红外与激光工程
2015, 44(11): 3353
作者单位
摘要
中国航空工业集团公司洛阳电光设备研究所, 河南 洛阳 471009
介绍了一种大视场短波红外光学系统消热差设计。系统工作波段为0.9~1.7μm,分辨率为640 pixel×512 pixel,光学系统总长55 mm。设计结果表明,在空间频率为20 lp/mm处,系统工作温度在-40 ℃~60 ℃环境下,各个温度下的系统调制传递函数(MTF)值均大于0.6。系统具有高像质、工作温度范围宽、结构紧凑、重量轻等优点。
光学设计 高分辨率 短波红外 被动消热差 衍射光学 
激光与光电子学进展
2012, 49(1): 012204

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!