作者单位
摘要
1 中国科学院 国家授时中心 时间频率基准重点实验室, 陕西 西安 710600
2 中国科学院大学, 北京 100049
为了实现中国科学院国家授时中心研制的锶原子光晶格钟钟跃迁的自动化探测, 设计了完整的自动控制系统。该系统主要由延迟精度与同步精度在μs 量级的时序控制系统和满足要求的激光频率扫描系统组成。两个控制系统均通过LabVIEW软件编程及虚拟仪器控制光场和磁场。完成了锶原子的两级冷却和光晶格囚禁, 最终得到了高信噪比载波线宽为180 Hz的锶原子1S0-3P0钟跃迁谱线。谱线展现了高信噪比和窄线宽的特点, 表明整个锶原子光钟系统的运行较为稳健, 整个控制系统满足实验对于控制精度的需求, 实现了锶原子光钟系统的自动化操作与控制。该控制系统具有一定普适性, 也可拓展至需要对光场及磁场进行控制的其他系统中。
锶原子光晶格钟 时序控制 谱线扫描控制 虚拟仪器 strontium optical lattice clock sequence control spectral scanning control virtual instrument 
光学 精密工程
2016, 24(1): 50
作者单位
摘要
1 北京大学 信息科学技术学院,北京 100871
2 中国计量科学研究院电学与量子科学研究所,北京 100013
介绍了一种以电脑程序模拟计算线圈分布的方法,以精确匹配作为锶原子光晶格钟中作为冷却装置的塞曼减速器的理论塞曼磁场。说明了优化设计程序的算法结构及基本流程,并对实验中的实际塞曼磁场和锶原子光晶格钟磁光阱信号进行测量。这种设计方法完全基于电脑程序的模拟运算,可以根据实际情况改变物理参数和磁场模型,并迅速有效地计算出与之匹配的线圈分布。计算磁场相对于理论磁场的均方根(RMS)达到2.17×10-4 T,实现了较高的磁场匹配度。
原子与分子物理 原子冷却 塞曼减速器 锶原子光晶格钟 
光学学报
2010, 30(4): 935

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!