首页 > 论文 > Frontiers of Optoelectronics > 9卷 > 3期(pp:428-435)

Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

100-GHz cross-cascaded arrayed waveguide gratings (AWGs)-based wavelength selective optical switching optical cross-connects (OXCs) modules with Mach-Zehnder interferometer (MZI) thermo-optic (TO) variable optical attenuator (VOA) arrays and optical truetime- delay (TTD) line arrays is successfully designed and fabricated using polymer photonic lightwave circuit. Highly fluorinated photopolymer and grafting modified organic-inorganic hybrid material were synthesized as the waveguide core and cladding, respectively. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the transverse-magnetic (TM) mode. The actual maximum modulation depths of different thermo-optic switches are similar, ~15.5 dB with 1.9 V bias. The maximum power consumption of a single switch is less than 10mW. The delay time basic increments are measured from 140 to 20 ps. Proposed novel module is flexible and scalable for the dense wavelength division multiplexing network.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1007/s12200-016-0591-6

所属栏目:RESEARCH ARTICLE

基金项目:The authors gratefully acknowledged financial support from the National Natural Science Foundation of China (Grant Nos. 61261130586,61275033 and 61205032), Science and Technology Development Plan of Jilin Province (Nos. 20130522151JH and 20140519006JH).

收稿日期:2015-11-11

修改稿日期:2016-06-15

网络出版日期:--

作者单位    点击查看

Changming CHEN:State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Daming ZHANG:State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

联系人作者:Daming ZHANG(zhangdm@jlu.edu.cn)

备注:Changming Chen received the B.S. degree in electronic science and technology, M.S. and Ph.D. degrees in microelectronics and solid electronics from Jilin University, Changchun, China, in 2005, 2007, and 2010, respectively. He has been a Faculty Member in Jilin University. His research interests include polymer integrated optical waveguide circuit devices (such as array waveguide grating multiplexers, electro-optic modulators and switches, ultra-long waveguide delay lines, and so on), and the second harmonic measuring systems for nonlinear optics.

【1】Zami T. Current and future flexible wavelength routing crossconnects. Bell Labs Technical Journal, 2013, 18(3): 22–38

【2】Iwai Y, Hasegawa H, Sato K. A large-scale photonic node architecture that utilizes interconnected OXC subsystems. Optics Express, 2013, 21(1): 478–487

【3】Sato K, Hasegawa H. Optical networking technologies that will create future bandwidth-abundant networks. Journal of Optical Communications and Networking, 2009, 1(2): A81–A93

【4】Le H C, Hasegawa H, Sato K. Performance evaluation of large-scale multi-stage hetero-granular optical cross-connects. Optics Express, 2014, 22(3): 3157–3168

【5】Li Z, Claver H. Compact wavelength-selective optical switch based on digital optical phase conjugation. Optics Letters, 2013, 38(22): 4789–4792

【6】Rohit A, Bolk J, Leijtens X J M, Williams K A. Monolithic nanosecond-reconfigurable 4_4 space and wavelength selective cross-connect. IEEE Journal of Lightwave Technology, 2012, 30 (17): 2913–2921

【7】Stabile R, Rohit A, Williams K A. Monolithically integrated 8_8 space and wavelength selective cross-connect. IEEE Journal of Lightwave Technology, 2014, 32(2): 201–207

【8】Tran V, Zhong W D, Tucker R S, Song K. Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings. IEEE Photonics Technology Letters, 2001, 13(13): 1100–1102

【9】Han Y T, Shin J U, Park S H, Seo J K, Lee H J, HwangWY, Park H H, Baek Y. 2_2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides. IEEE Photonics Technology Letters, 2012, 24(19): 1757–1760

【10】Claes T, Bogaerts W, Bienstman P. Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source. Optics Letters, 2011, 36(17): 3320–3322

【11】Han Y, Shin J, Park S, Han S, Baek Y, Lee C, Noh Y, Lee H, Park H. Fabrication of 10-channel polymer thermo-optic digital optical switch array. IEEE Photonics Technology Letters, 2009, 21(20): 1556–1558

【12】Segawa T, Matsuo S, Kakitsuka T, Shibata Y, Sato T, Kawaguchi Y, Kondo Y, Takahashi R. All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG. Optics Express, 2010, 18(5): 4340–4345

【13】Fang Q, Song J, Zhang G. Monolithic integration of a multiplexer/ demultiplexer with a thermo-optic VOA array on an SOI platform. IEEE Photonics Technology Letters, 2009, 21(5): 319–321

【14】Yeniay A, Gao R. True time delay photonic circuit based on perfluorpolymer waveguides. IEEE Photonics Technology Letters, 2010, 22(21): 1565–1567

【15】Oguma M, Kamei S, Kitoh T, Hashimoto T, Sakamaki Y, Itoh M, Takahashi H. Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide. IEICE Electronics Express, 2010, 7(11): 823–826

【16】Segawa T, Matsuo S, Kakitsuka T, Shibata Y, Sato T, Kawaguchi Y, Kondo Y, Takahashi R. All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG. Optics Express, 2010, 18(5): 4340–4345

【17】Dai D, Bauter. J, Bowers J E. Passive technologies for future largescale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction. Light, Science & Applications, 2012, 1: e1

【18】Bontempi F, Faralli S, Contestabile G. An InP monolithically integrated unicast and multicast wavelength converter. IEEE Photonics Technology Letters, 2013, 25(22): 2178–2181

【19】Andriolli N, Faralli S, Bontempi F, Contestabile G. A wavelengthpreserving photonic integrated regenerator for NRZ and RZ signals. Optics Express, 2013, 21(18): 20649–20655

【20】Andriolli, N, Faralli, S, and Leijtens, XJM. Monolithically integrated all-optical regenerator for constant envelope WDM signals. IEEE Journal of Lightwave Technology, 2013 31(2): 322– 327

【21】Francesca B, Sergio P, Nicola A. Multifunctional current-controlled InP photonic integrated delay interferometer. IEEE Journal of Quantum Electronics, 2012, 48(11): 1453–1461

【22】Nicholes S C, Masanovic ML, Jevremovic B, Lively E, Coldren L A. An 8_8 InP monolithic tunable optical router (motor) packet forwarding chip. IEEE Journal of Lightwave Technology, 2010, 28: 641–650

【23】Welch D F, Kish F A, Melle S, Nagarajan R, Kato M, Joyner C H, Pleumeekers J L, Schneider R P, Back J, Dentai A G, Dominic V G, Evans P W, Kauffman M, Lambert D J H, Hurtt S K, Mathur A, Mitchell M L, Missey M, Murthy S, Nilsson A C, Salvatore R A, Van Leeuwen M F, Webjorn J, Ziari M, Grubb S G, Perkins D, Reffle M, Mehuys D G. Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 22– 31

【24】Wang J, Kroh M, Richter T, Theurer A, Matiss A, Zawadzki C, Zhang Z, Schubert C, Steffan A, Grote N, Keil N, Kroh M, Richter T. Hybrid-integrated polarization diverse coherent receiver based on polymer PLC. IEEE Photonics Technology Letters, 2012, 24(29): 1718–1721

【25】Bamiedakis N, Beals J, Penty R V, White I H, DeGroot J V, Clapp T V. Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects. IEEE Journal of Quantum Electronics, 2009, 45(4): 415–424

【26】Gorman T, Haxha S, Ju J J. Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section. IEEE Journal of Lightwave Technology, 2009, 27(1): 68–76

【27】Chen C, Zhang F, Zhang D. UV curable electro-optic polymer switch based on direct photo definition technique. IEEE Journal of Quantum Electronics, 2011, 47(7): 959–964

【28】Dalton L R, Sullivan P A, Bale D H. Electric field poled organic electro-optic materials: state of the art and future prospects. Chemical Reviews, 2010, 110(1): 25–55

【29】Hassan K, Weeber J C, Markey L, Dereux A, Pitilakis A, Tsilipakos O, Kriezis E E. Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides. Applied Physics Letters, 2011, 99(24): 241110

【30】Chen C, Cui Z, Zhang D. Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials. IEEE Journal of Quantum Electronics, 2012, 48(1): 61–66

【31】Chen C, Niu X, Han C, Shi Z, Wang X, Sun X, Wang F, Cui Z, Zhang D. Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits. Optics Express, 2014, 22(17): 19895–19911

【32】Chen C, Niu X, Han C, Shi Z, Wang X, Sun X, Wang F, Cui Z, Zhang D. Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit. Optics Express, 2014, 22(9): 10716–10727

【33】Oguchi K. New notations based on the wavelength transfer matrix for functional analysis of wavelength circuits and new WDM networks using AWG-based star coupler with asymmetric characteristics. IEEE Journal of Lightwave Technology, 1996, 14(6): 1255–1263

【34】Hu G, Cui Y, Yun B, Lu C, Wang Z. A polymeric optical switch array based on arrayed waveguide grating structure. Optics Communications, 2007, 279(1): 79–82

【35】Wan Y, Fei X, Shi Z, Hu J, Zhang X, Zhao L, Chen C, Cui Z, Zhang D. Highly fluorinated low-molecular-weight photoresists for optical waveguides. Journal of Polymer Science Part A, Polymer Chemistry, 2011, 49(3): 762–769

【36】Chen C, Han C, Wang L, Zhang H, Sun X, Wang F, Zhang D. 650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials. IEEE Journal of Quantum Electronics, 2013, 49(5): 61–66

【37】Kawano K. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schr?dinger Equations. New York: Wiley, 2001

【38】Hassan K, Weeber J C, Markey L, Dereux A, Pitilakis A, Tsilipakos O, Kriezis E E. Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides. Applied Physics Letters, 2011, 99(24): 241110

引用该论文

Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Frontiers of Optoelectronics, 2016, 9(3): 428-435

Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Frontiers of Optoelectronics, 2016, 9(3): 428-435

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF