首页 > 论文 > 光学学报 > 37卷 > 4期(pp:412003--1)

超高NA光刻投影物镜高阶波像差检测方法

High-Order Aberration Measurement Method for Hyper-NA Lithographic Projection Lens

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于八角度孤立空检测标记的超高NA光刻投影物镜高阶波像差检测方法。通过对八角度孤立空检测标记的空间像进行主成分分析(PCA)和多元线性回归分析,构建了超高NA光刻投影物镜的空间像光强分布与高阶波像差之间的线性模型,并基于该模型实现了高阶波像差的检测。与使用六角度孤立空检测标记的传统方法相比,本方法提高了光瞳面波前的采样效率,拓展了波像差检测范围,实现了超高NA光刻投影物镜高阶波像差(Z5~Z64)的高精度检测。光刻仿真软件PROLITH的仿真结果表明,该方法可实现60项泽尼克系数(Z5~Z64)的检测,检测精度优于1.03×10-3λ。

Abstract

A high-order aberration measurement method for hyper-NA lithographic projection lens based on a test target with eight angles is proposed. A linear model between aerial image intensity distribution of the hyper-NA lithographic projection lens and high-order aberrations is built by principal component analysis (PCA) and multivariate linear regression analysis for binary target with eight angles of aerial image. And the high-order aberration measurement is achieved based on the proposed model. Compared with the binary target with six angles in the conventional method, the proposed method improves the efficiency of pupil wavefront sampling, expands the measuring range of the wavefront aberrations, and achieves the high precision measurement of high-order aberrations(Z5~Z64) of the hyper-NA lithographic projection lens. Simulations with the lithographic simulator PROLITH show that the proposed method can realize the measurement for 60 terms of Zernike coefficients (Z5~Z64) with measurement accuracy better than 1.03×10-3λ.

投稿润色
补充资料

中图分类号:TN305.7

DOI:10.3788/aos201737.0412003

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(61275207,61405210,61474129)

收稿日期:2016-10-27

修改稿日期:2016-12-08

网络出版日期:--

作者单位    点击查看

诸波尔:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
王向朝:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
李思坤:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
孟泽江:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
张恒:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
戴凤钊:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
段立峰:上海微电子装备有限公司, 上海 201203

联系人作者:诸波尔(zhuboer@126.com)

备注:诸波尔(1991-),男,博士研究生,主要从事高端光刻机投影物镜波像差检测技术方面的研究。

【1】Brunner T A. Impact of lens aberrations on optical lithography[J]. IBM J Res Develop, 1997, 41(1-2): 57-67.

【2】Erdmann A, Arnz M. The impact of aberration averaging during step-and-scan on the photolithographic process[J]. Microelectron Eng, 1998, 41-42(2): 117-120.

【3】Graeupner P, Garries R B, Goehnermeier A, et al. Impact of wavefront errors on low k1 processes at extremely high NA[C]. SPIE, 2003, 5040: 119-130.

【4】Ma Mingying, Wang Xiangzhao, Wang Fan, et al. Novel method for measuring coma with fine overlay test marks[J]. Acta Optica Sinica, 2006, 26(7): 1037-1042.
马明英, 王向朝, 王 帆, 等. 基于套刻误差测试标记的彗差检测技术[J]. 光学学报, 2006, 26(7): 1037-1042.

【5】de Boeij W P, Pieternella R, Bouchoms I, et al. Extending immersion lithography down to 1x nm production nodes[C]. SPIE, 2013, 8683: 86831L.

【6】van der Laan H, Dierichs M, van Greevenroek H, et al. Aerial image measurement methods for fast aberration set-up and illumination pupil verification[C]. SPIE, 2001, 4346: 394-407.

【7】Hagiwara T, Kondo N, Hiroshi I, et al. Development of aerial image based aberration measurement technique[C]. SPIE, 2005, 5754: 1659-1669.

【8】Duan L F, Wang X Z, Bourov A Y, et al. In situ aberration measurement technique based on principal component analysis of aerial image[J]. Opt Express, 2011, 19(19): 18080-18090.

【9】Xu D B, Wang X Z, Bu Y, et al. In situ aberration measurement technique based on multi-illumination settings and principal component analysis of aerial images[J]. Chinese Optics Letters, 2012, 10(12): 121202.

【10】Zhu Boer, Wang Xiangzhao, Li Sikun, et al. Aberration measurement method for hyper-NA lithographic projection lens[J]. Acta Optica Sinica, 2016, 36(1): 0112002.
诸波尔, 王向朝, 李思坤, 等. 超大数值孔径光刻机投影物镜波像差检测方法[J]. 光学学报, 2016, 36(1): 0112002.

【11】Wong A K K. Optical imaging in projection microlithography[M]. Bellinghan: SPIE Press, 2005, TT66: 102-107.

【12】Born M, Wolf E. Principles of optics[M]. Cambridge: Cambridge University Press, 1998: 411-417.

【13】Yang J S, Wang X Z, Li S K, et al. High-order aberration measurement technique based on quadratic Zernike model with optimized source[J]. Opt Eng, 2013, 52(5): 053603.

【14】Ward C, David K. Numerical mathematics and computing[M]. Brooks/Cole Publishing, 2008: 321-322.

【15】Norihiro Y, Jongwook K, Harry J L. Polarization aberration analysis using Pauli-Zernike representation[C]. SPIE, 2007, 6520: 65200Y.

【16】Shen Lina, Li Sikun, Wang Xiangzhao, et al. Analytical analysis for impact of polarization aberration of projection lens on lithographic imaging quality[C]. SPIE, 2015, 9426; 94261E.

【17】Box G E P, Behnken D W. Some new three level designs for the study of quantitative variables[J]. Technometrics, 1960, 2(4): 455-475.

【18】Chris A M. Lithography simulation in semiconductor manufacturing[C]. SPIE, 2005, 5645: 63-83.

【19】Jolliffe I T. Principal component analysis[M]. New York: Springer Press, 2002: 150-165.

【20】Rawlings J O, Pantula S G, Dickey D A. Applied regression analysis: a research tool[M]. New York: Springer Press, 2008: 93-97.

【21】Lai K, Gallatin G M, van de Kerkhof M, et al. New paradigm in lens metrology for lithographic scanner: evaluation and exploration[C]. SPIE, 2004, 5377: 160-171.

引用该论文

Zhu Boer,Wang Xiangzhao,Li Sikun,Meng Zejiang,Zhang Heng,Dai Fengzhao,Duan Lifeng. High-Order Aberration Measurement Method for Hyper-NA Lithographic Projection Lens[J]. Acta Optica Sinica, 2017, 37(4): 0412003

诸波尔,王向朝,李思坤,孟泽江,张恒,戴凤钊,段立峰. 超高NA光刻投影物镜高阶波像差检测方法[J]. 光学学报, 2017, 37(4): 0412003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF