首页 > 论文 > 光学学报 > 37卷 > 4期(pp:416001--1)

基于溶液加工氧化石墨烯的高性能有机太阳能电池

High-Performance Organic Photovoltaics Using Solution-Processed Graphene Oxide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用溶液旋涂法在铟锡氧化物(ITO)电极上制备氧化石墨烯(GO)薄膜作为有机太阳能电池(OPVs)的空穴传输层,通过调控旋涂转速优化了氧化石墨烯薄膜的厚度并研究了膜厚对于器件性能的影响规律。在此基础上,通过紫外臭氧(UVO)处理和热处理等方法进一步提升电池器件的性能。结果表明:在紫外臭氧处理和热处理温度为250 ℃时,所得电池器件的效率最优,达到3.16%,接近于使用经典聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)材料的电池器件水平。这一结果表明具有低成本、可溶液加工以及优异的光透过性等特点的氧化石墨烯会成为一种未来非常有前景的有机太阳能电池的空穴传输层材料。

Abstract

This work presents the application of graphene oxide (GO) thin films, which are prepared on indium tin oxide (ITO) electrodes by solution spin coating method, as the hole transport layer in organic photovoltaics (OPVs). The thickness of GO films is optimized by adjusting the spin speed, and the effect of GO thickness on the performance of solar cells is investigated. Based on this, the performance of solar cell devices is further improved by using such methods as ultraviolet ozone (UVO) and annealing treatments. The results show that when the temperature of UVO and annealing treatments reach 250 ℃, the OPV devices achieve the highest power conversion efficiency of 3.16%, which is close to the result using a classical poly (3,4-ethylenedioxythiophene): polystyrene sulfonic acid (PEDOT: PSS) material. This result has indicated that GO, with such advantages as low-cost, solution processing, and excellent light transmittance, will become a promising and effective material for hole transport layer in OPVs.

投稿润色
补充资料

中图分类号:TM914.4

DOI:10.3788/aos201737.0416001

所属栏目:材料

基金项目:上海市教委晨光计划(13CG42)、山西省基础研究计划项目(2015021028)、山西省高等学校科技创新项目(2015177)、大同市工业攻关项目(2015016)、博士科研启动项目(2013-B-12)

收稿日期:2016-10-28

修改稿日期:2016-11-30

网络出版日期:--

作者单位    点击查看

田正浩:上海大学机电工程与自动化学院新型显示技术及应用集成教育部重点实验室, 上海 200072
司长峰:上海大学机电工程与自动化学院新型显示技术及应用集成教育部重点实验室, 上海 200072
屈文山:山西大同大学炭材料研究所,山西 大同 037009
郭坤平:上海大学机电工程与自动化学院新型显示技术及应用集成教育部重点实验室, 上海 200072
潘赛虎:上海大学机电工程与自动化学院新型显示技术及应用集成教育部重点实验室, 上海 200072
高志翔:山西大同大学炭材料研究所,山西 大同 037009
徐韬:上海大学机电工程与自动化学院新型显示技术及应用集成教育部重点实验室, 上海 200072
魏斌:上海大学机电工程与自动化学院新型显示技术及应用集成教育部重点实验室, 上海 200072

联系人作者:田正浩(tianzhenghao@i.shu.edu.cn)

备注:田正浩(1993-),男,硕士研究生,主要从事有机与无机光电器件方面的研究。

【1】Jo M Y, Do T T, Ha Y E, et al. Enhanced efficiency in polymer solar cells by incorporation of phenothiazine-based conjugated polymer electrolytes[J]. Organic Electronics, 2015, 16: 18-25.

【2】Choi S, Zhou Y, Haske W, et al. ITO-free large-area flexible organic solar cells with an embedded metal grid[J]. Organic Electronics, 2015, 17: 349-354.

【3】Cao Jing, Zhan Zhen, Liu Pengyi. Optical simulation based on P3HT: PCBM bulk-heterojunction solar cells: a comparison of normal and inverted structures of device[J]. Acta Optica Sinica, 2013, 33(3): 0323004.
曹 婧, 詹 真, 刘彭义. 基于P3HT: PCBM体异质结的正置和倒置太阳能电池性能的数值研究[J]. 光学学报, 2013, 33(3): 0323004.

【4】Chen G, Wang T, Li C, et al. Enhanced photovoltaic performance in inverted polymer solar cells using Li ion doped ZnO cathode buffer layer[J]. Organic Electronics, 2016, 36: 50-56.

【5】Xiao Xiao, Xu Defu, Xiao Zhigang, et al. Study on enhancement effects of a grating electrode inorganic solar cells[J]. Acta Optica Sinica, 2015, 35(s1): s116001.
肖 啸, 许德富, 肖志刚, 等. 光栅电极在有机太阳能电池中的增强效应研究[J]. 光学学报, 2015, 35(s1): s116001.

【6】Zhang Jian, Yang Xiucheng, Feng Xiaodong. Research progress of organic solar cells structure[J]. Electronic Components and Materials, 2012, 31(11): 75-78.
张 剑, 杨秀程, 冯晓东. 有机太阳能电池结构研究进展[J]. 电子元件与材料, 2012, 31(11): 75-78.

【7】Huang Linquan, Zhou Lingyu, Yu Wei, et al. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells[J]. Acta Physica Sinica, 2015, 64(3): 26-35.
黄林泉, 周玲玉, 于 为, 等. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展[J]. 物理学报, 2015, 64(3): 26-35.

【8】Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010, 4(6): 3169-3174.

【9】Shrotriya V, Li G, Yao Y, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells[J]. Applied Physics Letters, 2006, 88(7): 073508.

【10】Han S, Shin W S, Seo M, et al. Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes[J]. Organic Electronics, 2009, 10(5): 791-797.

【11】Yip H L, Jen A K Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells[J]. Energy & Environmental Science, 2012, 5(3): 5994-6011.

【12】Hao Zhihong, Hu Ziyang, Zhang Jianjun, et al. Influence of doped PEDOT:PSS on performance of polymer solar cells[J]. Acta Physica Sinica, 2011, 60(11): 556-562.
郝志红, 胡子阳, 张建军, 等. 掺杂PEDOT:PSS对聚合物太阳能电池性能影响的研究[J]. 物理学报, 2011, 60(11): 556-562.

【13】Li G, Shrotriya V, Yao Y, et al. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)[J]. Journal of Applied Physics, 2005, 98(4): 043704.

【14】Liu J, Durstock M, Dai L. Graphene oxide derivatives as hole-and electron-extraction layers for high-performance polymer solar cells[J]. Energy & Environmental Science, 2014, 7(4): 1297-1306.

【15】Wan X, Long G, Huang L, et al. Graphene-a promising material for organic photovoltaic cells[J]. Advanced Materials, 2011, 23(45): 5342-5358.

【16】Stratakis E, Stylianakis M M, Koudoumas E, et al. Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement[J]. Nanoscale, 2013, 5(10): 4144-4150.

【17】Chen Wei, Li Fushan, Guo Tailiang. Applications of graphene in optoelectronic devices[J]. Science & Technology Review, 2015, 33(5): 34-38.
陈 伟, 李福山, 郭太良. 石墨烯在光电器件中的应用[J]. 科技导报, 2015, 33(5): 34-38.

【18】Jiang Lili, Lu Xiong. Graphene applications in solar cells[J]. Journal of Inorganic Materials, 2012, 27(11): 1129-1137.
姜丽丽, 鲁 雄. 石墨烯在太阳能电池中的应用[J]. 无机材料学报, 2012, 27(11): 1129-1137.

【19】Li Xing’ao, Ren Mingwei, Ren Ruiyi, et al. The application and progress of graphene for organic optoelectronic devices[J]. Materials Review, 2012, 26(21): 8-12.
李兴鳌, 任明伟, 任睿毅, 等. 石墨烯在有机光电器件中的应用研究进展[J]. 材料导报, 2012, 26(21): 8-12.

【20】Wang H, Feng H, Li J. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage[J]. Small, 2014, 10(11): 2165-2181.

【21】Liu Z, Lau S P, Yan F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chemical Society Reviews, 2015, 44(15): 5638-5679.

【22】Yin Fang, Chen Dizhao, Liu Jiajia, et al. Preparation technology and thermostability of graphite oxide[J]. Journal of Materials Science and Engineering, 2013, 31(3): 336-340, 408.
尹 芳, 陈迪钊, 刘佳佳, 等. 氧化石墨烯的制备工艺及热稳定性[J]. 材料科学与工程学报, 2013, 31(3): 336-340, 408.

【23】Yang Yunshang, Zhang Bin, Zhang Yingpeng. Preparation and application research in composite of graphene oxide[J]. Applied Chemical Industry, 2013, 42(6): 1138-1141.
杨云裳, 张 彬, 张应鹏. 氧化石墨烯的制备及在复合材料中的应用研究进展[J]. 应用化工, 2013, 42(6): 1138-1141.

【24】Wan Chen, Peng Tongjiang, Sun Hongjuan, et al. Preparation and humidity-sensitive properties of graphene oxide in different oxidation degree[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(5): 915-921.
万 臣, 彭同江, 孙红娟, 等. 不同氧化程度氧化石墨烯的制备及湿敏性能研究[J]. 无机化学学报, 2012, 28(5): 915-921.

【25】Deng Yao, Huang Xiaorong, Wu Xiaoling. Review on graphene oxide composites[J]. Materials Review, 2012, 26(15): 84-87.
邓 尧, 黄肖容, 邬晓龄. 氧化石墨烯复合材料的研究进展[J]. 材料导报, 2012, 26(15): 84-87.

【26】Chuchmaa A, Palewicz M, Sikora A, et al. Influence of graphene oxide interlayer on PCE value of polymer solar cells[J]. Synthetic Metals, 2013, 169(2): 33-40.

【27】Xu Jia, Wu Sida, Liu Jiang, et al. Noise-like pulsed Raman fiber lasers using graphene oxide saturable absorber[J]. Chinese J Lasers, 2014, 41(3): 0302006.
徐 佳, 吴思达, 刘 江, 等. 基于氧化石墨烯的类噪声脉冲拉曼光纤激光器[J]. 中国激光, 2014, 41(3): 0302006.

【28】Liu J, Xue Y, Gao Y, et al. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells[J]. Advanced Materials, 2012, 24(17): 2228-2233.

【29】Manzano-Ramírez A, López-Naranjo E J, Soboyejo W, et al. A review on the efficiency of graphene-based BHJ organic solar cells[J]. Journal of Nanomaterials, 2015: 1-15.

【30】Hu X, Xiong J, Tang Y, et al. Interface modification of polymer solar cells using graphene oxide and TiO2 NPs[J]. Physica Status Solidi A, 2015, 212(3): 585-590.

【31】Wang T, Chen C, Guo K, et al. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers[J]. Chinese Physics B, 2016, 25(3): 038402.

【32】Yamashita D, Ishizaki A, Yamamoto T. In situ measurements of work function of indium tin oxide after UV/ozone treatment[J]. South-Western College Pub, 1995, 56(9): 1445-1447.

【33】Mason M G, Hung L S, Tang C W, et al. Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices[J]. Journal of Applied Physics, 1999, 86(3): 1688-1692.

【34】Li Yanping, Yu Huangzhong, Dong Yifan, et al. Anode interface modification of organic solar cells with solution-prepared MoO3[J]. Progress in Chemistry, 2016(8): 1170-1185.
李炎平, 於黄忠, 董一帆, 等. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016(8): 1170-1185.

【35】Nagashima A, Nuka K, Itoh H, et al. Electronic states of monolayer graphite formed on TiC(111) surface[J]. Surface Science, 1993, 291(1): 93-98.

【36】Liu Si, Tu Wenmao, Liu Xiang, et al. Study on low temperature preparation of graphene oxide[J]. Journal of Wuhan University of Technology, 2012, 34(9): 10-13.
刘 思, 涂文懋, 刘 翔, 等. 氧化石墨烯的低温制备研究[J]. 武汉理工大学学报, 2012, 34(9): 10-13.

【37】Liu Yanzhen, Liu Yongfeng, Yang Yonggang, et al. The effect of thermal treatment at low temperatures on graphene oxide films[J]. New Carbon Materials, 2011, 26(1): 41-45.
刘燕珍, 李永锋, 杨永岗, 等. 低温热处理对氧化石墨烯薄膜的影响[J]. 新型炭材料, 2011, 26(1): 41-45.

引用该论文

Tian Zhenghao,Si Changfeng,Qu Wenshan,Guo Kunping,Pan Saihu,Gao Zhixiang,Xu Tao,Wei Bin. High-Performance Organic Photovoltaics Using Solution-Processed Graphene Oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001

田正浩,司长峰,屈文山,郭坤平,潘赛虎,高志翔,徐韬,魏斌. 基于溶液加工氧化石墨烯的高性能有机太阳能电池[J]. 光学学报, 2017, 37(4): 0416001

被引情况

【1】孙 斌,杨友昌,万 猛,谢飞凤. 纳米金属光栅对石墨烯滤波影响的仿真分析. 激光与光电子学进展, 2017, 54(10): 102401--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF