首页 > 论文 > 光学学报 > 37卷 > 4期(pp:412005--1)

基于差分检测的球形碱金属气室导致线偏光转角的测量

Measurement of Linearly Polarized Light Rotation Caused by Spherical Alkali Vapor Cell Based on Difference Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对球形碱金属气室导致的线偏光振动方向转角进行了理论研究与差分检测实验测量。结果表明,当光束通过中心位置、入射面与振动方向相垂直或平行的位置时,气室对其偏振态没有影响,而其他位置均会产生一定偏转角,且偏转角随位置的不同而变化。对直径12 mm、壁厚0.9 mm的气室,偏离中心0.7 mm处产生的理论偏转角约为0.08°。在使用球形碱金属气室作为中心元件的仪器时,需要考虑其对线偏光转角的明显影响。

Abstract

Rotation of the linearly polarized light caused by spherical alkali vapor cell is studied theoretically and measured experimentally. The results show that the vapor cell has no effect on the polarization state of linearly polarized light when the light beams pass through the cell center, and the incident plane is parallel or perpendicular to the polarization orientation. While the other positions will produce a certain rotation, and the rotation angle varies with the positions. For the ideal vapor cell with the external diameter of 12 mm and thickness of 0.9 mm, the theoretical rotation is up to 0.08° when a position is off center of 0.7 mm. Therefore, the effect of polarization rotation should be considered, when using the spherical alkali vapor cell as a central element of the instrument.

投稿润色
补充资料

中图分类号:O436.3

DOI:10.3788/aos201737.0412005

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(61227902,61374210)

收稿日期:2016-11-09

修改稿日期:2017-01-01

网络出版日期:--

作者单位    点击查看

刘刚:北京航空航天大学仪器科学与光电工程学院惯性技术国防科技重点实验室, 北京 100191
赵毓婷:北京航空航天大学仪器科学与光电工程学院惯性技术国防科技重点实验室, 北京 100191
全伟:北京航空航天大学仪器科学与光电工程学院惯性技术国防科技重点实验室, 北京 100191

联系人作者:刘刚(lgang@buaa.edu.cn)

备注:刘刚(1970-),男,博士,教授,主要从事航天器惯性执行机构、精密机电控制和原子磁强计等方面的研究。

【1】Knappe S, Shah V, Schwindt P D D, et al. A microfabricated atomic clock[J]. Applied Physics Letters, 2004, 85(9): 1460-1462.

【2】Budker D, Romalis M. Optical magnetometer[J]. Natural Physics, 2007, 3(4): 227-234.

【3】Ledbetter M P, Savukov I M, Acosta V M, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physics Review A, 2008, 77(3): 033408.

【4】Cooper J J, Hallwood D W, Dunningham J A. Entanglement-enhanced atomic gyroscope[J]. Physics Review A, 2010, 81(4): 043624.

【5】Fang J C, Wan S A, Qin J, et al. A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation[J]. Review of Scientific Instruments, 2013, 84(8): 083108.

【6】Bell W E, Bloom A L, Lynch J. Alkali metal vapor spectral lamps[J]. Review of Science Instruments, 1961, 32(6): 688-692.

【7】Eklund E J, Shkel A M. Glass blowing on a wafer level[J]. Journal of Microelectromechanical Systems, 2007, 16(2): 232-239.

【8】Dural N, Romalis M V. Gallium phosphide as a new material for anodically bonded atomic sensors[J]. Applied Physics Letters Material, 2014, 2(8): 086101.

【9】Eklund J E, Shkel A M, Knappe S, et al. Glass-blown spherical microcells for chip-scale atomic devices[J]. Sensors and Actuators A, 2008, 143(1): 175-180.

【10】Liew L A, Knappe S, Moreland J, et al. Microfabricated alkali atom vapor cells[J]. Applied Physics Letters, 2004, 84(14): 2694-2696.

【11】P′etremand Y, Affolderbach C. Straessle R, et al. Microfabricated rubidium vapour cellwith a thick glass core for small-scaleatomic clock applications[J]. Journal of Micromechanics and Microengineering, 2012, 22(2): 025013.

【12】Straessle R, Pellaton M, Affolderbach C, et al. Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks[J]. Journal of Applied Physics, 2013, 113(6): 064501.

【13】Knappe S, Velichansky V, Robinson H G, et al. Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glassfibers[J]. Review of Scientific Instruments, 2003, 74(6): 3142-3145.

【14】Balabas M V, Budker D, Kitching J, et al. Magnetometry with millimeter-scale antirelaxation-coated alkali-metal vapor cells[J]. Journal of the Optical Society of America B, 2005, 23(6): 1001-1006.

【15】Atutov S N, Benimetskiy F A, Plekhanov A I, et al. Study of Rb-vapor coated cells-atomic diffusion and cell curing process[J]. The European Physical Journal D, 2016, 70(2): 1-6.

【16】Wei Q, Yang L, Yao C, et al. Coating qualities evaluation for alkali-metal atomic vapor cells based on frustrated total internal reflection[J]. Chinese Physics Letters, 2014, 31(3): 030701.

【17】Kornack T W. A test of CPT and Lorentz symmetry using a K-3 He co-magnetometer[D]. Princeton: Princeton University, 2005: 141-143.

【18】Tang Feilong, Li Zhongliang, Bu Yang, et al. Calibration of rotating quarter-wave method based polarimeter[J]. Acta Optica Sinica, 2013, 33(9): 0912005.
汤飞龙, 李中梁, 步 扬, 等. 旋转波片法偏振检测装置器件参数校准[J]. 光学学报, 2013, 33(9): 0912005.

【19】Yu Zhenfang, Qiu Qi, Guo Yong. Dual modulation optical polarimetry for glucose monitoring[J]. Acta Optica Sinica, 2016, 36(1): 0117001.
余振芳, 邱 琪, 郭 勇. 双调制光学偏振法葡萄糖浓度检测[J]. 光学学报, 2016, 36(1): 0117001.

【20】Ding Zhichao, Li Yingying, Wang Zhiguo, et al. Research of rubidium atomic magnetometer based on Faraday rotation detection[J]. Chinese J Lasers, 2015, 42(4): 0408003.
丁志超, 李莹颖, 汪之国, 等. 基于法拉第旋转检测的铷原子磁力仪研究[J]. 中国激光, 2015, 42(4): 0408003.

引用该论文

Liu Gang,Zhao Yuting,Quan Wei. Measurement of Linearly Polarized Light Rotation Caused by Spherical Alkali Vapor Cell Based on Difference Detection[J]. Acta Optica Sinica, 2017, 37(4): 0412005

刘刚,赵毓婷,全伟. 基于差分检测的球形碱金属气室导致线偏光转角的测量[J]. 光学学报, 2017, 37(4): 0412005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF